Lösung 1.3:3d
Aus Online Mathematik Brückenkurs 2
Lokale Extrempunkte einer Funktion sind entweder:
- stationäre Punkte mit
f ,(x)=0
- singuläre Punkte, in denen die Funktion nicht differenzierbar ist, oder
- Endpunkte.
Wir untersuchen zuerst die Bedingungen 2 und 3. Die Funktion besteht aus einen Bruch von zwei Polynomen. Die Funktion ist nur undefiniert, wenn der Nenner ungleich null ist. Da der Nenner
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Der Ausdruck ist null, wenn der Zähler null ist. Wir erhalten die Gleichung
![]() ![]() |
Die linke Seite ist null, wenn einer der Faktoren
Die letzte Gleichung lösen wir am einfachsten, wenn wir
Durch quadratische Ergänzung erhalten wir
Die Lösungen sind 2
2=x2
Die Funktion hat also drei stationäre Punkte, 2−1
2−1
Wir bestimmen deren Charakter, indem wir das Vorzeichen der Ableitung bestimmen. Wir wissen schon, dass
![]() ![]() ![]() ![]() ![]() |
und durch quadratische Ergänzung von
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Die Ableitung ist also
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Wir betrachten nun die Vorzeichen der einzelnen Faktoren.
| ![]() ![]() | | ![]() ![]() | ||||
| | | | | | \displaystyle + | \displaystyle + |
\displaystyle 2 - (x^2 + 1)^2 | \displaystyle - | \displaystyle 0 | \displaystyle + | \displaystyle + | \displaystyle + | \displaystyle 0 | \displaystyle - |
\displaystyle (x^4 + 1)^2 | \displaystyle + | \displaystyle + | \displaystyle + | \displaystyle + | \displaystyle + | \displaystyle + | \displaystyle + |
Durch Ausmultiplizieren erhalten wir das Vorzeichen der Ableitung.
\displaystyle x | \displaystyle -\sqrt{ \sqrt{2} - 1} | \displaystyle 0 | \displaystyle \sqrt{ \sqrt{2} - 1} | ||||
\displaystyle \insteadof{2 - (x^2 + 1)^2}{f^{\, \prime} (x)} | \displaystyle + | \displaystyle 0 | \displaystyle - | \displaystyle 0 | \displaystyle + | \displaystyle 0 | \displaystyle - |
\displaystyle f(x) | \displaystyle \nearrow | \displaystyle \tfrac{1 }{2} (\sqrt{2} + 1) | \displaystyle \searrow | \displaystyle 1 | \displaystyle \nearrow | \displaystyle \tfrac{1 }{2} (\sqrt{2} + 1) | \displaystyle \searrow |
Die Funktion hat also ein lokales Maximum im Punkt \displaystyle x=\pm \sqrt{\sqrt{2}-1} ind ein lokales Minimum im Punkt \displaystyle x=0.