3.3 Potenzen und Wurzeln
Aus Online Mathematik Brückenkurs 2
|
Content:
- De Moivre's Theorem
- Binomial equations
- exponential function
- Eulers formula
- Completing the square
- Quadratic equations
Learning outcomes:
After this section, you will have learned how to:
- Calculate the powers of complex numbers with Moivres Theorem.
- Calculate the roots of certain complex numbers by rewriting to polar form.
- Solve binomial equations.
- Complete the square for complex quadratics expressions.
- Solve complex quadratic equations.
De Moivre's Theorem
The computational rules zw
=
z
w
- REDIRECT Template:Abgesetzte Formel
For an arbitrary number +isin
)
- REDIRECT Template:Abgesetzte Formel
If z
=1
- REDIRECT Template:Abgesetzte Formel
which is usually referred to as de Moivres Theorem. This relationship is very useful when it comes to deriving trigonometric identities and calculating the roots and powers of complex numbers.
Example 1
If 21+i
We write 2+i
2=1
cos
4+isin
4
- REDIRECT Template:Abgesetzte Formel
Example 2
In the usual way one does an expansion by means of the squaring rules
- REDIRECT Template:Abgesetzte Formel
and according to the Moivres theorem one gets
- REDIRECT Template:Abgesetzte Formel
If one equates the real and imaginary parts of the two expressions one gets the well-known trigonometric formulas
- REDIRECT Template:Abgesetzte Formel
Example 3
Simplify 3+i)14(1+i
3)7(1+i)10
We write the numbers 3+i
3
,3+i=2
cos
6+isin
6
1+i ,3=2
cos
3+isin
3
1+i= .2
cos
4+isin
4
Then we get with Moivres Theorem
- REDIRECT Template:Abgesetzte Formel
and this expression can be simplified by performing multiplication and division in polar form
- REDIRECT Template:Abgesetzte Formel
Binomial equations
A complex number
- REDIRECT Template:Abgesetzte Formel
The above relationship can also be seen as an equation in which
For a given number w
(cos
+isin
)
+isin
)
- REDIRECT Template:Abgesetzte Formel
where Moivres theorm has been used on the left-hand side. Equating moduli and arguments gives
- REDIRECT Template:Abgesetzte Formel
Note that we add multiples of
- REDIRECT Template:Abgesetzte Formel
This gives one value of
Comment. Note that the roots arguments differ from each other by n
n
w
Exempel 4
Solve the binomial equation
Write
z=r(cos ,+isin
)
16i=16 .cos
2+isin
2
This turns the equation
- REDIRECT Template:Abgesetzte Formel
Matching the moduli and arguments on both sides gives
- REDIRECT Template:Abgesetzte Formel
The solutions to the equation is thus
| 3.3 - Figur - Komplexa talen z₁, z₂, z₃ och z₄ |
Exponential form of complex numbers
If we manipulate
- REDIRECT Template:Abgesetzte Formel
we get after differentiation
- REDIRECT Template:Abgesetzte Formel
The only real functions which behave like this are
- REDIRECT Template:Abgesetzte Formel
This definition turns out to be a completely natural generalisation of the exponential function for the real numbers. Putting
- REDIRECT Template:Abgesetzte Formel
The definition of +isin
)=rei
Example 5
For a real number i
- REDIRECT Template:Abgesetzte Formel
Example 6
A further indication of why the above definition is so natural is given by the relationship
- REDIRECT Template:Abgesetzte Formel
which demonstrates that Moivres theorm is actually identical to the well-known law of powers,
- REDIRECT Template:Abgesetzte Formel
Example 7
From the above definition, one can obtain the relationship
- REDIRECT Template:Abgesetzte Formel
which connects together the, generally regarded, most basic numbers in mathematics:
Example 8
Solve the equation
Put
w=r(cos +isin
)=rei
,
−8i=8 cos23
+isin23
=8e3
i
2.
The equation in polar form is i=8e3
i
2
- REDIRECT Template:Abgesetzte Formel
The roots of the equation are thus
w1=2e i
2=2
cos
2+isin
2
=2i,
w2=2e7 i
6=2
cos67
+isin67
=−
3−i,
w3=2e11 i
6=2
cos611
+isin611
=
3−i,
i.e. 3−2i
3−2i
Example 9
Solve
If for z
=r
z
=r
- REDIRECT Template:Abgesetzte Formel
which directly gives that =0
=1
- REDIRECT Template:Abgesetzte Formel
The solutions are
z1=e0=1, z2=e2 i
3=cos32
+isin32
=−21+2
3i,
z3=e4 i
3=cos34
+isin34
=−21−2
3i,
z4=0.
Completing the square
The squaring rules,
- REDIRECT Template:Abgesetzte Formel
which are usually used to expand parenthesis can also be used in reverse to obtain quadratic expressions. For example,
- REDIRECT Template:Abgesetzte Formel
This can be used to solve quadratic equations, for example,
- REDIRECT Template:Abgesetzte Formel
Taking roots then gives that 9
3
Sometimes it is necessary to add or subtract an appropriate number to obtain a suitable expression. The above equation, for example, could just as easily been presented to us as
- REDIRECT Template:Abgesetzte Formel
By adding 9 to both sides, we get a suitable expression on the left side:
- REDIRECT Template:Abgesetzte Formel
This method is called completing the square.
Example 10
- Solve the equation
x2−6x+7=2 . The coefficient in front ofx is−6 and it shows that we must have the number(−3)2=9 as the constant term on the left-hand side to make a complete square. By adding2 to both sides we achieve this:- REDIRECT Template:Abgesetzte Formel
x−3= , which means that2
x=1 orx=5 . - Solve the equation
z2+21=4−8z . The equation can be written asz2+8z+17=0 . By subtracting 1 on both sides, we get a complete square on the left-hand side:- REDIRECT Template:Abgesetzte Formel
z+4= . In other words, the solutions are−1
z=−4−i andz=−4+i .
Generally, completing the square may be regarded as arranging that "the square of half the coefficient of the x-term" is the constant term in the quadratic expression. This term can always be added add to the two sides without worrying about the other terms and then manipulating the equation. If the coefficients of the expression are complex numbers, one still can go about it in the same way.
Example 11
Solve the equation
Half the coefficient of −34
2=916
- REDIRECT Template:Abgesetzte Formel
Now it's easy to get to 35
35
Example 12
Solve the equation
Completing the square gives
- REDIRECT Template:Abgesetzte Formel
This gives the usual formula, pq-formula, for solutions to quadratic equations
- REDIRECT Template:Abgesetzte Formel
Example 13
Solve the equation
Half the coefficient of \displaystyle z is \displaystyle -(6+2i) so we add the square of this expression to both sides
- REDIRECT Template:Abgesetzte Formel
Expanding the square on the right-hand side \displaystyle \ (-(6+2i))^2=36+24i+4i^2=32+24i\ and completing the square on the left-hand side gives
- REDIRECT Template:Abgesetzte Formel
After a taking roots, we have that \displaystyle \ z-(6+2i)=\pm 6\ and therefore the solutions are \displaystyle z=12+2i and \displaystyle z=2i.
If one wants to bring about a square in a detached expression one can use the same technique. In order not to change the value of the expression one both adds and subtracts the missing constant term, such as in the following,
- REDIRECT Template:Abgesetzte Formel
Example 14
Complete the square in the expression \displaystyle \ z^2+(2-4i)z+1-3i\,.
Add and subtract the term \displaystyle \bigl(\frac{1}{2}(2-4i)\bigr)^2=(1-2i)^2=-3-4i\,,
- REDIRECT Template:Abgesetzte Formel
Solving using a formula
To solve quadratic equations sometimes the simplest method is to use the usual formula for quadratic equations. However, this may lead to that one ends up with terms of the type \displaystyle \sqrt{a+ib}. One can then assume
- REDIRECT Template:Abgesetzte Formel
By squaring both sides we get
- REDIRECT Template:Abgesetzte Formel
Matching the real and imaginary parts gives
- REDIRECT Template:Abgesetzte Formel
These equations can be solved by substitution, for example, \displaystyle y= b/(2x) can be inserted in the first equation.
Example 15
Solve \displaystyle \ \sqrt{-3-4i}\,.
Put \displaystyle \ x+iy=\sqrt{-3-4i}\ where \displaystyle x and \displaystyle y are real numbers. Squaring both sides gives
- REDIRECT Template:Abgesetzte Formel
which leads to the system of equations
- REDIRECT Template:Abgesetzte Formel
From the second equation, we can solve for \displaystyle \ y=-4/(2x) = -2/x\ and put it into the first equation to get
- REDIRECT Template:Abgesetzte Formel
This is a quadratic equation in \displaystyle x^2 which can be seen more easily by putting \displaystyle t=x^2,
- REDIRECT Template:Abgesetzte Formel
The solutions are \displaystyle t = 1 and \displaystyle t = -4. The latter solution must be rejected, as \displaystyle x and \displaystyle y have been assumed to be real numbers, and thus \displaystyle x^2=-4 cannot be true. We get \displaystyle x=\pm\sqrt{1}, which gives us two possible solutions
- \displaystyle \ x=-1\ which gives \displaystyle \ y=-2/(-1)=2\,,
- \displaystyle \ x=1\ which gives \displaystyle \ y=-2/1=-2\,.
So we can conclude that
- REDIRECT Template:Abgesetzte Formel
Example 16
- Solve the equation \displaystyle \ z^2-2z+10=0\,.
The formula for solutions to a quadratic equations (see example 3) gives that
- REDIRECT Template:Abgesetzte Formel
- Solve the equation \displaystyle \ z^2 + (4-2i)z -4i=0\,\mbox{.}
Here, once again , the pq-formula may be used giving the solutions directly .
- REDIRECT Template:Abgesetzte Formel
- Solve the equation \displaystyle \ iz^2+(2+6i)z+2+11i=0\,\mbox{.}
Division of both sides with \displaystyle i gives
- REDIRECT Template:Abgesetzte Formel
- REDIRECT Template:Abgesetzte Formel
- REDIRECT Template:Abgesetzte Formel