Solution 9.5
From Mechanics
In the figure \displaystyle F1 is the air resistance.
Resolving up the plane
\displaystyle \begin{align} & F1+F-mg\sin {{20}^{\circ }}=0 \\ & \\ & F1=mg\sin {{20}^{\circ }}-F=60\times 9\textrm{.}81\times 0\textrm{.}342-F=201\textrm{.}3\ \text{N}-F \\ \end{align}
Resolving perpendicular to the plane upwards
\displaystyle \begin{align} & R-mg\cos {{20}^{\circ }}=0 \\ & \\ & R=mg\cos {{20}^{\circ }}=60\times 9\textrm{.}81\times 0\textrm{.}94=553\ \text{N} \\ \end{align}
Using the friction equation gives
\displaystyle F=\mu R=0\textrm{.}05\times 553=27\textrm{.}65\ \text{N}
Substituting in the above equation for \displaystyle R1 gives
\displaystyle F1=201\textrm{.}3-27\textrm{.}65\approx 173\ \text{N}