Processing Math: 64%
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

2.2 Exercises

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
(Translated links into English)
Current revision (23:40, 11 November 2008) (edit) (undo)
 
(8 intermediate revisions not shown.)
Line 2: Line 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
-
{{Ej vald flik|[[2.2 Linjära uttryck|Theory]]}}
+
{{Not selected tab|[[2.2 Linear expressions|Theory]]}}
-
{{Vald flik|[[2.2 Övningar|Exercises]]}}
+
{{Selected tab|[[2.2 Exercises|Exercises]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  
|}
|}
Line 21: Line 21:
|| <math>5x+7=2x-6</math>
|| <math>5x+7=2x-6</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Svar 2.2:1|Solution a|Lösning 2.2:1a|Solution b|Lösning 2.2:1b|Solution c|Lösning 2.2:1c|Solution d|Lösning 2.2:1d}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.2:1|Solution a|Solution 2.2:1a|Solution b|Solution 2.2:1b|Solution c|Solution 2.2:1c|Solution d|Solution 2.2:1d}}
===Exercise 2.2:2===
===Exercise 2.2:2===
Line 37: Line 37:
|| <math>(x^2+4x+1)^2+3x^4-2x^2=(2x^2+2x+3)^2</math>
|| <math>(x^2+4x+1)^2+3x^4-2x^2=(2x^2+2x+3)^2</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Svar 2.2:2|Solution a|Lösning 2.2:2a|Solution b|Lösning 2.2:2b|Solution c|Lösning 2.2:2c|Solution d|Lösning 2.2:2d}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.2:2|Solution a|Solution 2.2:2a|Solution b|Solution 2.2:2b|Solution c|Solution 2.2:2c|Solution d|Solution 2.2:2d}}
===Exercise 2.2:3===
===Exercise 2.2:3===
Line 55: Line 55:
|| <math>\left(\displaystyle\frac{2}{x}-3\right)\left(\displaystyle\frac{1}{4x}+\frac{1}{2}\right)-\left(\displaystyle\frac{1}{2x}-\frac{2}{3}\right)^2-\left(\displaystyle\frac{1}{2x}+\frac{1}{3}\right)\left(\displaystyle\frac{1}{2x}-\frac{1}{3}\right)=0</math>
|| <math>\left(\displaystyle\frac{2}{x}-3\right)\left(\displaystyle\frac{1}{4x}+\frac{1}{2}\right)-\left(\displaystyle\frac{1}{2x}-\frac{2}{3}\right)^2-\left(\displaystyle\frac{1}{2x}+\frac{1}{3}\right)\left(\displaystyle\frac{1}{2x}-\frac{1}{3}\right)=0</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Svar 2.2:3|Solution a|Lösning 2.2:3a|Solution b|Lösning 2.2:3b|Solution c|Lösning 2.2:3c|Solution d|Lösning 2.2:3d}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.2:3|Solution a|Solution 2.2:3a|Solution b|Solution 2.2:3b|Solution c|Solution 2.2:3c|Solution d|Solution 2.2:3d}}
===Exercise 2.2:4===
===Exercise 2.2:4===
Line 66: Line 66:
|| Write the equation for the line <math> 3x+4y-5=0</math> in the form <math>\,y=kx+m\,</math>.
|| Write the equation for the line <math> 3x+4y-5=0</math> in the form <math>\,y=kx+m\,</math>.
|}
|}
-
</div>{{#NAVCONTENT:Answer|Svar 2.2:4|Solution a|Lösning 2.2:4a|Solution b|Lösning 2.2:4b}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.2:4|Solution a|Solution 2.2:4a|Solution b|Solution 2.2:4b}}
===Exercise 2.2:5===
===Exercise 2.2:5===
Line 86: Line 86:
|| Determine the slope, <math>\,k\,</math>, for the straight line that cuts the ''x''-axis at the point <math>\,(5,0)\,</math> and ''y''-axis at the point <math>\,(0,-8)\,</math>.
|| Determine the slope, <math>\,k\,</math>, for the straight line that cuts the ''x''-axis at the point <math>\,(5,0)\,</math> and ''y''-axis at the point <math>\,(0,-8)\,</math>.
|}
|}
-
</div>{{#NAVCONTENT:Answer|Svar 2.2:5|Solution a|Lösning 2.2:5a|Solution b|Lösning 2.2:5b|Solution c|Lösning 2.2:5c|Solution d|Lösning 2.2:5d|Solution e|Lösning 2.2:5e}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.2:5|Solution a|Solution 2.2:5a|Solution b|Solution 2.2:5b|Solution c|Solution 2.2:5c|Solution d|Solution 2.2:5d|Solution e|Solution 2.2:5e}}
===Exercise 2.2:6===
===Exercise 2.2:6===
Line 93: Line 93:
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
-
|width="50%" | <math>y=3x+5\ </math> and ''x''-axeln
+
|width="50%" | <math>y=3x+5\ </math> and the ''x''-axis
|b)
|b)
-
|width="50%" | <math>y=-x+5\ </math> and ''y''-axeln
+
|width="50%" | <math>y=-x+5\ </math> and the ''y''-axis
|-
|-
|c)
|c)
-
|width="50%" | <math>4x+5y+6=0\ </math> and ''y''-axeln
+
|width="50%" | <math>4x+5y+6=0\ </math> and the ''y''-axis
|d)
|d)
|| <math>x+y+1=0\ </math> and <math>\ x=12</math>
|| <math>x+y+1=0\ </math> and <math>\ x=12</math>
Line 105: Line 105:
|| <math>2x+y-1=0\ </math> and <math>\ y-2x-2=0</math>
|| <math>2x+y-1=0\ </math> and <math>\ y-2x-2=0</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Svar 2.2:6|Solution a|Lösning 2.2:6a|Solution b|Lösning 2.2:6b|Solution c|Lösning 2.2:6c|Solution d|Lösning 2.2:6d|Solution e|Lösning 2.2:6e}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.2:6|Solution a|Solution 2.2:6a|Solution b|Solution 2.2:6b|Solution c|Solution 2.2:6c|Solution d|Solution 2.2:6d|Solution e|Solution 2.2:6e}}
===Exercise 2.2:7===
===Exercise 2.2:7===
Line 118: Line 118:
|width="33%" | <math>f(x)=2</math>
|width="33%" | <math>f(x)=2</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Svar 2.2:7|Solution a|Lösning 2.2:7a|Solution b|Lösning 2.2:7b|Solution c|Lösning 2.2:7c}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.2:7|Solution a|Solution 2.2:7a|Solution b|Solution 2.2:7b|Solution c|Solution 2.2:7c}}
===Exercise 2.2:8===
===Exercise 2.2:8===
<div class="ovning">
<div class="ovning">
-
In the ''xy''-plane, fill in all the points whose coordinates <math>\,(x,y)\,</math> satisfy
+
In the ''xy''-plane, shade in the section whose coordinates <math>\,(x,y)\,</math> satisfy
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 131: Line 131:
|width="33%" | <math>2x+3y \leq 6 </math>
|width="33%" | <math>2x+3y \leq 6 </math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Svar 2.2:8|Solution a|Lösning 2.2:8a|Solution b|Lösning 2.2:8b|Solution c|Lösning 2.2:8c}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.2:8|Solution a|Solution 2.2:8a|Solution b|Solution 2.2:8b|Solution c|Solution 2.2:8c}}
===Exercise 2.2:9===
===Exercise 2.2:9===
Line 146: Line 146:
|| is described by the inequalities <math>\ x+y \geq -2\,</math>, <math>\ 2x-y \leq 2\ </math> and <math>\ 2y-x \leq 2\,</math>.
|| is described by the inequalities <math>\ x+y \geq -2\,</math>, <math>\ 2x-y \leq 2\ </math> and <math>\ 2y-x \leq 2\,</math>.
|}
|}
-
</div>{{#NAVCONTENT:Answer|Svar 2.2:9|Solution a|Lösning 2.2:9a|Solution b|Lösning 2.2:9b|Solution c|Lösning 2.2:9c}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.2:9|Solution a|Solution 2.2:9a|Solution b|Solution 2.2:9b|Solution c|Solution 2.2:9c}}

Current revision

       Theory          Exercises      

Exercise 2.2:1

Solve the equations

a) x2=1 b) 2x+1=13
c) 31x1=x d) 5x+7=2x6

Exercise 2.2:2

Solve the equations

a) 65x9x+2=21 b) 78x+345x7=2
c) (x+3)2(x5)2=6x+4 d) (x2+4x+1)2+3x42x2=(2x2+2x+3)2

Exercise 2.2:3

Solve the equations

a) x3x+3x2x+5=0
b) 4x4x712x3=1
c) 1x11x+1x2+21=3x36x1 
d) x2314x+2112x32212x+3112x31=0 

Exercise 2.2:4

a) Write the equation for the line y=2x+3 in the form ax+by=c.
b) Write the equation for the line 3x+4y5=0 in the form y=kx+m.

Exercise 2.2:5

a) Determine the equation for the straight line that goes between the points (23) and(30).
b) Determine the equation for the straight line that has slope 3 and goes through the point (12).
c) Determine the equation for the straight line that goes through the point (12) and is parallel to the line y=3x+1.
d) Determine the equation for the straight line that goes through the point (24) and is perpendicular to the line y=2x+5.
e) Determine the slope, k, for the straight line that cuts the x-axis at the point (50) and y-axis at the point (08).

Exercise 2.2:6

Find the points of intersection between the pairs of lines in the following

a) y=3x+5  and the x-axis b) y=x+5  and the y-axis
c) 4x+5y+6=0  and the y-axis d) x+y+1=0  and  x=12
e) \displaystyle 2x+y-1=0\ and \displaystyle \ y-2x-2=0

Exercise 2.2:7

Sketch the graph of the functions

a) \displaystyle f(x)=3x-2 b) \displaystyle f(x)=2-x c) \displaystyle f(x)=2

Exercise 2.2:8

In the xy-plane, shade in the section whose coordinates \displaystyle \,(x,y)\, satisfy

a) \displaystyle y \geq x b) \displaystyle y < 3x -4 c) \displaystyle 2x+3y \leq 6

Exercise 2.2:9

Calculate the area of the triangle which

a) has corners at the points \displaystyle \,(1,4)\,, \displaystyle \,(3,3)\, and \displaystyle \,(1,0)\,.
b) is bordered by the lines \displaystyle \ x=2y\,, \displaystyle \ y=4\ and \displaystyle \ y=10-2x\,.
c) is described by the inequalities \displaystyle \ x+y \geq -2\,, \displaystyle \ 2x-y \leq 2\ and \displaystyle \ 2y-x \leq 2\,.