2.2 Exercises
From Förberedande kurs i matematik 1
m (Robot: Automated text replacement (-Svar +Answer)) |
|||
(6 intermediate revisions not shown.) | |||
Line 2: | Line 2: | ||
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
| style="border-bottom:1px solid #000" width="5px" | | | style="border-bottom:1px solid #000" width="5px" | | ||
- | {{ | + | {{Not selected tab|[[2.2 Linear expressions|Theory]]}} |
- | {{ | + | {{Selected tab|[[2.2 Exercises|Exercises]]}} |
| style="border-bottom:1px solid #000" width="100%"| | | style="border-bottom:1px solid #000" width="100%"| | ||
|} | |} | ||
Line 21: | Line 21: | ||
|| <math>5x+7=2x-6</math> | || <math>5x+7=2x-6</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer|Answer 2.2:1|Solution a| | + | </div>{{#NAVCONTENT:Answer|Answer 2.2:1|Solution a|Solution 2.2:1a|Solution b|Solution 2.2:1b|Solution c|Solution 2.2:1c|Solution d|Solution 2.2:1d}} |
===Exercise 2.2:2=== | ===Exercise 2.2:2=== | ||
Line 37: | Line 37: | ||
|| <math>(x^2+4x+1)^2+3x^4-2x^2=(2x^2+2x+3)^2</math> | || <math>(x^2+4x+1)^2+3x^4-2x^2=(2x^2+2x+3)^2</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer|Answer 2.2:2|Solution a| | + | </div>{{#NAVCONTENT:Answer|Answer 2.2:2|Solution a|Solution 2.2:2a|Solution b|Solution 2.2:2b|Solution c|Solution 2.2:2c|Solution d|Solution 2.2:2d}} |
===Exercise 2.2:3=== | ===Exercise 2.2:3=== | ||
Line 55: | Line 55: | ||
|| <math>\left(\displaystyle\frac{2}{x}-3\right)\left(\displaystyle\frac{1}{4x}+\frac{1}{2}\right)-\left(\displaystyle\frac{1}{2x}-\frac{2}{3}\right)^2-\left(\displaystyle\frac{1}{2x}+\frac{1}{3}\right)\left(\displaystyle\frac{1}{2x}-\frac{1}{3}\right)=0</math> | || <math>\left(\displaystyle\frac{2}{x}-3\right)\left(\displaystyle\frac{1}{4x}+\frac{1}{2}\right)-\left(\displaystyle\frac{1}{2x}-\frac{2}{3}\right)^2-\left(\displaystyle\frac{1}{2x}+\frac{1}{3}\right)\left(\displaystyle\frac{1}{2x}-\frac{1}{3}\right)=0</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer|Answer 2.2:3|Solution a| | + | </div>{{#NAVCONTENT:Answer|Answer 2.2:3|Solution a|Solution 2.2:3a|Solution b|Solution 2.2:3b|Solution c|Solution 2.2:3c|Solution d|Solution 2.2:3d}} |
===Exercise 2.2:4=== | ===Exercise 2.2:4=== | ||
Line 66: | Line 66: | ||
|| Write the equation for the line <math> 3x+4y-5=0</math> in the form <math>\,y=kx+m\,</math>. | || Write the equation for the line <math> 3x+4y-5=0</math> in the form <math>\,y=kx+m\,</math>. | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer|Answer 2.2:4|Solution a| | + | </div>{{#NAVCONTENT:Answer|Answer 2.2:4|Solution a|Solution 2.2:4a|Solution b|Solution 2.2:4b}} |
===Exercise 2.2:5=== | ===Exercise 2.2:5=== | ||
Line 86: | Line 86: | ||
|| Determine the slope, <math>\,k\,</math>, for the straight line that cuts the ''x''-axis at the point <math>\,(5,0)\,</math> and ''y''-axis at the point <math>\,(0,-8)\,</math>. | || Determine the slope, <math>\,k\,</math>, for the straight line that cuts the ''x''-axis at the point <math>\,(5,0)\,</math> and ''y''-axis at the point <math>\,(0,-8)\,</math>. | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer|Answer 2.2:5|Solution a| | + | </div>{{#NAVCONTENT:Answer|Answer 2.2:5|Solution a|Solution 2.2:5a|Solution b|Solution 2.2:5b|Solution c|Solution 2.2:5c|Solution d|Solution 2.2:5d|Solution e|Solution 2.2:5e}} |
===Exercise 2.2:6=== | ===Exercise 2.2:6=== | ||
Line 105: | Line 105: | ||
|| <math>2x+y-1=0\ </math> and <math>\ y-2x-2=0</math> | || <math>2x+y-1=0\ </math> and <math>\ y-2x-2=0</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer|Answer 2.2:6|Solution a| | + | </div>{{#NAVCONTENT:Answer|Answer 2.2:6|Solution a|Solution 2.2:6a|Solution b|Solution 2.2:6b|Solution c|Solution 2.2:6c|Solution d|Solution 2.2:6d|Solution e|Solution 2.2:6e}} |
===Exercise 2.2:7=== | ===Exercise 2.2:7=== | ||
Line 118: | Line 118: | ||
|width="33%" | <math>f(x)=2</math> | |width="33%" | <math>f(x)=2</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer|Answer 2.2:7|Solution a| | + | </div>{{#NAVCONTENT:Answer|Answer 2.2:7|Solution a|Solution 2.2:7a|Solution b|Solution 2.2:7b|Solution c|Solution 2.2:7c}} |
===Exercise 2.2:8=== | ===Exercise 2.2:8=== | ||
<div class="ovning"> | <div class="ovning"> | ||
- | In the ''xy''-plane, | + | In the ''xy''-plane, shade in the section whose coordinates <math>\,(x,y)\,</math> satisfy |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
Line 131: | Line 131: | ||
|width="33%" | <math>2x+3y \leq 6 </math> | |width="33%" | <math>2x+3y \leq 6 </math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer|Answer 2.2:8|Solution a| | + | </div>{{#NAVCONTENT:Answer|Answer 2.2:8|Solution a|Solution 2.2:8a|Solution b|Solution 2.2:8b|Solution c|Solution 2.2:8c}} |
===Exercise 2.2:9=== | ===Exercise 2.2:9=== | ||
Line 146: | Line 146: | ||
|| is described by the inequalities <math>\ x+y \geq -2\,</math>, <math>\ 2x-y \leq 2\ </math> and <math>\ 2y-x \leq 2\,</math>. | || is described by the inequalities <math>\ x+y \geq -2\,</math>, <math>\ 2x-y \leq 2\ </math> and <math>\ 2y-x \leq 2\,</math>. | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer|Answer 2.2:9|Solution a| | + | </div>{{#NAVCONTENT:Answer|Answer 2.2:9|Solution a|Solution 2.2:9a|Solution b|Solution 2.2:9b|Solution c|Solution 2.2:9c}} |
Current revision
Theory | Exercises |
Exercise 2.2:1
Solve the equations
a) | | b) | |
c) | | d) | |
Answer | Solution a | Solution b | Solution c | Solution d
Exercise 2.2:2
Solve the equations
a) | | b) | |
c) | | d) | |
Answer | Solution a | Solution b | Solution c | Solution d
Exercise 2.2:3
Solve the equations
a) | |
b) | |
c) | ![]() ![]() ![]() ![]() |
d) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Answer | Solution a | Solution b | Solution c | Solution d
Exercise 2.2:4
a) | Write the equation for the line |
b) | Write the equation for the line |
Exercise 2.2:5
a) | Determine the equation for the straight line that goes between the points ![]() ![]() |
b) | Determine the equation for the straight line that has slope ![]() |
c) | Determine the equation for the straight line that goes through the point ![]() |
d) | Determine the equation for the straight line that goes through the point ![]() |
e) | Determine the slope, ![]() ![]() |
Answer | Solution a | Solution b | Solution c | Solution d | Solution e
Exercise 2.2:6
Find the points of intersection between the pairs of lines in the following
a) | | b) | |
c) | | d) | |
e) | \displaystyle 2x+y-1=0\ and \displaystyle \ y-2x-2=0 |
Answer | Solution a | Solution b | Solution c | Solution d | Solution e
Exercise 2.2:7
Sketch the graph of the functions
a) | \displaystyle f(x)=3x-2 | b) | \displaystyle f(x)=2-x | c) | \displaystyle f(x)=2 |
Answer | Solution a | Solution b | Solution c
Exercise 2.2:8
In the xy-plane, shade in the section whose coordinates \displaystyle \,(x,y)\, satisfy
a) | \displaystyle y \geq x | b) | \displaystyle y < 3x -4 | c) | \displaystyle 2x+3y \leq 6 |
Answer | Solution a | Solution b | Solution c
Exercise 2.2:9
Calculate the area of the triangle which
a) | has corners at the points \displaystyle \,(1,4)\,, \displaystyle \,(3,3)\, and \displaystyle \,(1,0)\,. |
b) | is bordered by the lines \displaystyle \ x=2y\,, \displaystyle \ y=4\ and \displaystyle \ y=10-2x\,. |
c) | is described by the inequalities \displaystyle \ x+y \geq -2\,, \displaystyle \ 2x-y \leq 2\ and \displaystyle \ 2y-x \leq 2\,. |
Answer | Solution a | Solution b | Solution c