Processing Math: 32%
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

2.2 Exercises

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
Current revision (23:40, 11 November 2008) (edit) (undo)
 
(13 intermediate revisions not shown.)
Line 2: Line 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
-
{{Mall:Ej vald flik|[[2.2 Linjära uttryck|Teori]]}}
+
{{Not selected tab|[[2.2 Linear expressions|Theory]]}}
-
{{Mall:Vald flik|[[2.2 Övningar|Övningar]]}}
+
{{Selected tab|[[2.2 Exercises|Exercises]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  
|}
|}
-
===Övning 2.2:1===
+
===Exercise 2.2:1===
<div class="ovning">
<div class="ovning">
-
L&ouml;s ekvationerna
+
Solve the equations
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 21: Line 21:
|| <math>5x+7=2x-6</math>
|| <math>5x+7=2x-6</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 2.2:1|Lösning a|Lösning 2.2:1a|Lösning b|Lösning 2.2:1b|Lösning c|Lösning 2.2:1c|Lösning d|Lösning 2.2:1d}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.2:1|Solution a|Solution 2.2:1a|Solution b|Solution 2.2:1b|Solution c|Solution 2.2:1c|Solution d|Solution 2.2:1d}}
-
===Övning 2.2:2===
+
===Exercise 2.2:2===
<div class="ovning">
<div class="ovning">
-
L&ouml;s ekvationerna
+
Solve the equations
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 37: Line 37:
|| <math>(x^2+4x+1)^2+3x^4-2x^2=(2x^2+2x+3)^2</math>
|| <math>(x^2+4x+1)^2+3x^4-2x^2=(2x^2+2x+3)^2</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 2.2:2|Lösning a|Lösning 2.2:2a|Lösning b|Lösning 2.2:2b|Lösning c|Lösning 2.2:2c|Lösning d|Lösning 2.2:2d}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.2:2|Solution a|Solution 2.2:2a|Solution b|Solution 2.2:2b|Solution c|Solution 2.2:2c|Solution d|Solution 2.2:2d}}
-
===Övning 2.2:3===
+
===Exercise 2.2:3===
<div class="ovning">
<div class="ovning">
-
L&ouml;s ekvationerna
+
Solve the equations
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 55: Line 55:
|| <math>\left(\displaystyle\frac{2}{x}-3\right)\left(\displaystyle\frac{1}{4x}+\frac{1}{2}\right)-\left(\displaystyle\frac{1}{2x}-\frac{2}{3}\right)^2-\left(\displaystyle\frac{1}{2x}+\frac{1}{3}\right)\left(\displaystyle\frac{1}{2x}-\frac{1}{3}\right)=0</math>
|| <math>\left(\displaystyle\frac{2}{x}-3\right)\left(\displaystyle\frac{1}{4x}+\frac{1}{2}\right)-\left(\displaystyle\frac{1}{2x}-\frac{2}{3}\right)^2-\left(\displaystyle\frac{1}{2x}+\frac{1}{3}\right)\left(\displaystyle\frac{1}{2x}-\frac{1}{3}\right)=0</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 2.2:3|Lösning a|Lösning 2.2:3a|Lösning b|Lösning 2.2:3b|Lösning c|Lösning 2.2:3c|Lösning d|Lösning 2.2:3d}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.2:3|Solution a|Solution 2.2:3a|Solution b|Solution 2.2:3b|Solution c|Solution 2.2:3c|Solution d|Solution 2.2:3d}}
-
===Övning 2.2:4===
+
===Exercise 2.2:4===
<div class="ovning">
<div class="ovning">
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
-
|width="100%" | Skriv ekvationen f&ouml;r linjen<math>\,y=2x+3\,</math> på formen <math>\,ax+by=c\,</math>
+
|width="100%" | Write the equation for the line <math>\,y=2x+3\,</math> in the form <math>\,ax+by=c\,</math>.
|-
|-
|b)
|b)
-
|| Skriv ekvationen f&ouml;r linjen<math>,3x+4y-5=0</math> på formen <math>\,y=kx+m\,</math>
+
|| Write the equation for the line <math> 3x+4y-5=0</math> in the form <math>\,y=kx+m\,</math>.
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 2.2:4|Lösning a|Lösning 2.2:4a|Lösning b|Lösning 2.2:4b}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.2:4|Solution a|Solution 2.2:4a|Solution b|Solution 2.2:4b}}
-
===Övning 2.2:5===
+
===Exercise 2.2:5===
<div class="ovning">
<div class="ovning">
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
-
|width="100%" | Best&auml;m ekvationen f&ouml;r den r&auml;ta linje som g&aring;r genom punkterna<math>\,(2,3)\,</math> och <math>\,(3,0)\,</math>
+
|width="100%" | Determine the equation for the straight line that goes between the points <math>\,(2,3)\,</math> and<math>\,(3,0)\,</math>.
|-
|-
|b)
|b)
-
|| Best&auml;m ekvationen f&ouml;r den r&auml;ta linje som har riktningskoefficient<math>\,-3\,</math> och g&aring;r genom punkten <math>\,(1,-2)\,</math>
+
|| Determine the equation for the straight line that has slope <math>\,-3\,</math> and goes through the point <math>\,(1,-2)\,</math>.
|-
|-
|c)
|c)
-
|| Best&auml;m ekvationen f&ouml;r den r&auml;ta linje som g&aring;r genom punkten <math>\,(-1,2)\,</math> och &auml;r parallell med linjen <math>\,y=3x+1\,</math>
+
|| Determine the equation for the straight line that goes through the point <math>\,(-1,2)\,</math> and is parallel to the line <math>\,y=3x+1\,</math>.
|-
|-
|d)
|d)
-
||Best&auml;m ekvationen f&ouml;r den r&auml;ta linje som g&aring;r genom punkten <math>\,(2,4)\,</math> och &auml;r vinkelr&auml;t mot linjen <math>\,y=2x+5\,</math>
+
||Determine the equation for the straight line that goes through the point <math>\,(2,4)\,</math> and is perpendicular to the line <math>\,y=2x+5\,</math>.
|-
|-
|e)
|e)
-
|| Best&auml;m riktningskoefficienten, <math>\,k\,</math> f&ouml;r den r&auml;ta linje som sk&auml;r ''x''-axeln i punkten <math>\,(5,0)\,</math> och ''y''-axeln i punkten <math>\,(0,-8)\,</math>
+
|| Determine the slope, <math>\,k\,</math>, for the straight line that cuts the ''x''-axis at the point <math>\,(5,0)\,</math> and ''y''-axis at the point <math>\,(0,-8)\,</math>.
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 2.2:5|Lösning a|Lösning 2.2:5a|Lösning b|Lösning 2.2:5b|Lösning c|Lösning 2.2:5c|Lösning d|Lösning 2.2:5d|Lösning e|Lösning 2.2:5e}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.2:5|Solution a|Solution 2.2:5a|Solution b|Solution 2.2:5b|Solution c|Solution 2.2:5c|Solution d|Solution 2.2:5d|Solution e|Solution 2.2:5e}}
-
===Övning 2.2:6===
+
===Exercise 2.2:6===
<div class="ovning">
<div class="ovning">
-
Finn sk&auml;rningspunkten mellan f&ouml;ljande linjer
+
Find the points of intersection between the pairs of lines in the following
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
-
|width="50%" | <math>y=3x+5\ </math> och ''x''-axeln
+
|width="50%" | <math>y=3x+5\ </math> and the ''x''-axis
|b)
|b)
-
|width="50%" | <math>y=-x+5\ </math> och ''y''-axeln
+
|width="50%" | <math>y=-x+5\ </math> and the ''y''-axis
|-
|-
|c)
|c)
-
|width="50%" | <math>4x+5y+6=0\ </math> och ''y''-axeln
+
|width="50%" | <math>4x+5y+6=0\ </math> and the ''y''-axis
|d)
|d)
-
|| <math>x+y+1=0\ </math> och <math>\ x=12</math>
+
|| <math>x+y+1=0\ </math> and <math>\ x=12</math>
|-
|-
|e)
|e)
-
|| <math>2x+y-1=0\ </math> och <math>\ y-2x-2=0</math>
+
|| <math>2x+y-1=0\ </math> and <math>\ y-2x-2=0</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 2.2:6|Lösning a|Lösning 2.2:6a|Lösning b|Lösning 2.2:6b|Lösning c|Lösning 2.2:6c|Lösning d|Lösning 2.2:6d|Lösning e|Lösning 2.2:6e}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.2:6|Solution a|Solution 2.2:6a|Solution b|Solution 2.2:6b|Solution c|Solution 2.2:6c|Solution d|Solution 2.2:6d|Solution e|Solution 2.2:6e}}
-
===Övning 2.2:7===
+
===Exercise 2.2:7===
<div class="ovning">
<div class="ovning">
-
Skissera grafen till f&ouml;ljande funktioner
+
Sketch the graph of the functions
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 118: Line 118:
|width="33%" | <math>f(x)=2</math>
|width="33%" | <math>f(x)=2</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 2.2:7|Lösning a|Lösning 2.2:7a|Lösning b|Lösning 2.2:7b|Lösning c|Lösning 2.2:7c}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.2:7|Solution a|Solution 2.2:7a|Solution b|Solution 2.2:7b|Solution c|Solution 2.2:7c}}
-
===Övning 2.2:8===
+
===Exercise 2.2:8===
<div class="ovning">
<div class="ovning">
-
Rita in i ett ''xy''-plan alla punkter vars koordinater <math>\,(x,y)\,</math> uppfyller
+
In the ''xy''-plane, shade in the section whose coordinates <math>\,(x,y)\,</math> satisfy
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 131: Line 131:
|width="33%" | <math>2x+3y \leq 6 </math>
|width="33%" | <math>2x+3y \leq 6 </math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 2.2:8|Lösning a|Lösning 2.2:8a|Lösning b|Lösning 2.2:8b|Lösning c|Lösning 2.2:8c}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.2:8|Solution a|Solution 2.2:8a|Solution b|Solution 2.2:8b|Solution c|Solution 2.2:8c}}
-
===Övning 2.2:9===
+
===Exercise 2.2:9===
<div class="ovning">
<div class="ovning">
-
Ber&auml;kna arean av den triangel som
+
Calculate the area of the triangle which
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
-
|width="100%" | har h&ouml;rn i punkterna <math>\,(1,4)\,</math>, <math>\,(3,3)\,</math> och <math>\,(1,0)\,</math>
+
|width="100%" | has corners at the points <math>\,(1,4)\,</math>, <math>\,(3,3)\,</math> and <math>\,(1,0)\,</math>.
|-
|-
|b)
|b)
-
|| begr&auml;nsas av linjerna <math>\ x=2y\,</math>, <math>\ y=4\ </math> och <math>\ y=10-2x\,</math>
+
|| is bordered by the lines <math>\ x=2y\,</math>, <math>\ y=4\ </math> and <math>\ y=10-2x\,</math>.
|-
|-
|c)
|c)
-
|| beskrivs av olikheterna <math>\ x+y \geq -2\,</math>, <math>\ 2x-y \leq 2\ </math> och <math>\ 2y-x \leq 2\,</math>
+
|| is described by the inequalities <math>\ x+y \geq -2\,</math>, <math>\ 2x-y \leq 2\ </math> and <math>\ 2y-x \leq 2\,</math>.
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 2.2:9|Lösning a|Lösning 2.2:9a|Lösning b|Lösning 2.2:9b|Lösning c|Lösning 2.2:9c}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.2:9|Solution a|Solution 2.2:9a|Solution b|Solution 2.2:9b|Solution c|Solution 2.2:9c}}

Current revision

       Theory          Exercises      

Exercise 2.2:1

Solve the equations

a) x2=1 b) 2x+1=13
c) 31x1=x d) 5x+7=2x6

Exercise 2.2:2

Solve the equations

a) 65x9x+2=21 b) 78x+345x7=2
c) (x+3)2(x5)2=6x+4 d) (x2+4x+1)2+3x42x2=(2x2+2x+3)2

Exercise 2.2:3

Solve the equations

a) x3x+3x2x+5=0
b) 4x4x712x3=1
c) 1x11x+1x2+21=3x36x1 
d) x2314x+2112x32212x+3112x31=0 

Exercise 2.2:4

a) Write the equation for the line y=2x+3 in the form ax+by=c.
b) Write the equation for the line 3x+4y5=0 in the form y=kx+m.

Exercise 2.2:5

a) Determine the equation for the straight line that goes between the points \displaystyle \,(2,3)\, and\displaystyle \,(3,0)\,.
b) Determine the equation for the straight line that has slope \displaystyle \,-3\, and goes through the point \displaystyle \,(1,-2)\,.
c) Determine the equation for the straight line that goes through the point \displaystyle \,(-1,2)\, and is parallel to the line \displaystyle \,y=3x+1\,.
d) Determine the equation for the straight line that goes through the point \displaystyle \,(2,4)\, and is perpendicular to the line \displaystyle \,y=2x+5\,.
e) Determine the slope, \displaystyle \,k\,, for the straight line that cuts the x-axis at the point \displaystyle \,(5,0)\, and y-axis at the point \displaystyle \,(0,-8)\,.

Exercise 2.2:6

Find the points of intersection between the pairs of lines in the following

a) \displaystyle y=3x+5\ and the x-axis b) \displaystyle y=-x+5\ and the y-axis
c) \displaystyle 4x+5y+6=0\ and the y-axis d) \displaystyle x+y+1=0\ and \displaystyle \ x=12
e) \displaystyle 2x+y-1=0\ and \displaystyle \ y-2x-2=0

Exercise 2.2:7

Sketch the graph of the functions

a) \displaystyle f(x)=3x-2 b) \displaystyle f(x)=2-x c) \displaystyle f(x)=2

Exercise 2.2:8

In the xy-plane, shade in the section whose coordinates \displaystyle \,(x,y)\, satisfy

a) \displaystyle y \geq x b) \displaystyle y < 3x -4 c) \displaystyle 2x+3y \leq 6

Exercise 2.2:9

Calculate the area of the triangle which

a) has corners at the points \displaystyle \,(1,4)\,, \displaystyle \,(3,3)\, and \displaystyle \,(1,0)\,.
b) is bordered by the lines \displaystyle \ x=2y\,, \displaystyle \ y=4\ and \displaystyle \ y=10-2x\,.
c) is described by the inequalities \displaystyle \ x+y \geq -2\,, \displaystyle \ 2x-y \leq 2\ and \displaystyle \ 2y-x \leq 2\,.