Processing Math: 81%
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

4.3 Övningar

Förberedande kurs i matematik 1

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Nuvarande version (21 april 2008 kl. 13.16) (redigera) (ogör)
 
(13 mellanliggande versioner visas inte.)
Rad 72: Rad 72:
|}
|}
</div>{{#NAVCONTENT:Svar|Svar 4.3:4|Lösning a |Lösning 4.3:4a|Lösning b |Lösning 4.3:4b|Lösning c |Lösning 4.3:4c|Lösning d |Lösning 4.3:4d|Lösning e |Lösning 4.3:4e|Lösning f |Lösning 4.3:4f}}
</div>{{#NAVCONTENT:Svar|Svar 4.3:4|Lösning a |Lösning 4.3:4a|Lösning b |Lösning 4.3:4b|Lösning c |Lösning 4.3:4c|Lösning d |Lösning 4.3:4d|Lösning e |Lösning 4.3:4e|Lösning f |Lösning 4.3:4f}}
 +
 +
===Övning 4.3:5===
 +
<div class="ovning">
 +
För en spetsig vinkel <math>\,v\,</math> i en triangel gäller att <math>\,\sin{v}=\displaystyle \frac{5}{7}\,</math>. Bestäm <math>\,\cos{v}\,</math> och <math>\,\tan{v}\,</math>.
 +
</div>{{#NAVCONTENT:Svar|Svar 4.3:5|Lösning |Lösning 4.3:5}}
 +
 +
===Övning 4.3:6===
 +
<div class="ovning">
 +
{| width="100%" cellspacing="10px"
 +
|a)
 +
|width="100%" | Bestäm <math>\ \sin{v}\ </math> och <math>\ \tan{v}\ </math> om <math>\ \cos{v}=\displaystyle \frac{3}{4}\ </math> och <math>\ \displaystyle \frac{3\pi}{2} \leq v \leq 2\pi\,</math>.
 +
|-
 +
|b)
 +
|width="100%" | Bestäm <math>\ \cos{v}\ </math> och <math>\ \tan{v}\ </math> om <math>\ \sin{v}=\displaystyle \frac{3}{10}\ </math> och <math>\,v\,</math> ligger i den andra kvadranten.
 +
|-
 +
|c)
 +
|width="100%" | Bestäm <math>\ \sin{v}\ </math> och <math>\ \cos{v}\ </math> om <math>\ \tan{v}=3\ </math> och <math>\ \pi \leq v \leq \displaystyle \frac{3\pi}{2}\,</math>.
 +
|}
 +
</div>{{#NAVCONTENT:Svar|Svar 4.3:6|Lösning a |Lösning 4.3:6a|Lösning b |Lösning 4.3:6b|Lösning c |Lösning 4.3:6c}}
 +
 +
===Övning 4.3:7===
 +
<div class="ovning">
 +
Bestäm <math>\ \sin{(x+y)}\ </math> om
 +
{| width="100%" cellspacing="10px"
 +
|a)
 +
|width="100%" | <math>\sin{x}=\displaystyle \frac{2}{3}\,</math>,<math>\ \sin{y}=\displaystyle \frac{1}{3}\ </math> och <math>\,x\,</math>, <math> \,y\,</math> är vinklar i första kvadranten.
 +
|-
 +
|b)
 +
|width="100%" | <math>\cos{x}=\displaystyle \frac{2}{5}\,</math>, <math>\ \cos{y}=\displaystyle \frac{3}{5}\ </math> och <math>\,x\,</math>, <math>\,y\,</math> är vinklar i första kvadranten.
 +
|}
 +
</div>{{#NAVCONTENT:Svar|Svar 4.3:7|Lösning a |Lösning 4.3:7a|Lösning b |Lösning 4.3:7b}}
 +
 +
===Övning 4.3:8===
 +
<div class="ovning">
 +
Visa f&ouml;ljande trigonometriska samband
 +
{| width="100%" cellspacing="10px"
 +
|a)
 +
|width="100%" | <math>\tan^2v=\displaystyle\frac{\sin^2v}{1-\sin^2v}</math>
 +
|-
 +
|b)
 +
|width="100%" | <math>\displaystyle \frac{1}{\cos v}-\tan v=\frac{\cos v}{1+\sin v}</math>
 +
|-
 +
|c)
 +
|width="100%" | <math>\tan\displaystyle\frac{u}{2}=\frac{\sin u}{1+\cos u}</math>
 +
|-
 +
|d)
 +
|width="100%" | <math>\displaystyle\frac{\cos (u+v)}{\cos u \cos v}= 1- \tan u \tan v</math>
 +
|}
 +
</div>{{#NAVCONTENT:Lösning a |Lösning 4.3:8a|Lösning b |Lösning 4.3:8b|Lösning c |Lösning 4.3:8c|Lösning d |Lösning 4.3:8d}}
 +
 +
===Övning 4.3:9===
 +
<div class="ovning">
 +
{| width="100%" cellspacing="10px"
 +
|
 +
|width="100%" | Visa "Morries formel"
 +
|-
 +
|
 +
|width="100%" |<center> <math>\cos 20^\circ \cdot \cos 40^\circ \cdot \cos 80^\circ = \displaystyle\frac{1}{8}\,\mbox{.}</math> </center>
 +
|-
 +
|
 +
|width="100%" |(Ledtr&aring;d: Anv&auml;nd formeln f&ouml;r dubbla vinkeln på <math>\,\sin 160^\circ\,</math>.)
 +
|}
 +
</div>{{#NAVCONTENT:Lösning |Lösning 4.3:9}}

Nuvarande version

       Teori          Övningar      

Övning 4.3:1

Bestäm de vinklar v mellan 2 och 2 som uppfyller

a) cosv=cos5 b) sinv=sin7 c) tanv=tan72

Övning 4.3:2

Bestäm de vinklar v mellan 0 och som uppfyller

a) cosv=cos23 b) cosv=cos57

Övning 4.3:3

Antag att 2v2 och att sinv=a. Uttryck med hjälp av a

a) sin(v) b) sin(v)
c) cosv d) sin2v 
e) cos2+v  f) sin3+v 

Övning 4.3:4

Antag att 0v och att cosv=b. Uttryck med hjälp av b

a) sin2v b) sinv
c) sin2v d) cos2v
e) sinv+4  f) cosv3 

Övning 4.3:5

För en spetsig vinkel v i en triangel gäller att sinv=75. Bestäm cosv och tanv.

Övning 4.3:6

a) Bestäm  sinv  och  tanv  om  cosv=43  och  23v2.
b) Bestäm  cosv  och  tanv  om  sinv=310  och v ligger i den andra kvadranten.
c) Bestäm  sinv  och  cosv  om  tanv=3  och  v23.

Övning 4.3:7

Bestäm  sin(x+y)  om

a) sinx=32, siny=31  och x, \displaystyle \,y\, är vinklar i första kvadranten.
b) \displaystyle \cos{x}=\displaystyle \frac{2}{5}\,, \displaystyle \ \cos{y}=\displaystyle \frac{3}{5}\ och \displaystyle \,x\,, \displaystyle \,y\, är vinklar i första kvadranten.

Övning 4.3:8

Visa följande trigonometriska samband

a) \displaystyle \tan^2v=\displaystyle\frac{\sin^2v}{1-\sin^2v}
b) \displaystyle \displaystyle \frac{1}{\cos v}-\tan v=\frac{\cos v}{1+\sin v}
c) \displaystyle \tan\displaystyle\frac{u}{2}=\frac{\sin u}{1+\cos u}
d) \displaystyle \displaystyle\frac{\cos (u+v)}{\cos u \cos v}= 1- \tan u \tan v

Övning 4.3:9

Visa "Morries formel"
\displaystyle \cos 20^\circ \cdot \cos 40^\circ \cdot \cos 80^\circ = \displaystyle\frac{1}{8}\,\mbox{.}
(Ledtråd: Använd formeln för dubbla vinkeln på \displaystyle \,\sin 160^\circ\,.)