3.1 Übungen

Aus Online Mathematik Brückenkurs 2

Wechseln zu: Navigation, Suche
       Theorie          Übungen      

Übung 3.1:1

Schreibe folgende komplexe Zahlen in der Form \displaystyle \,a+bi\,, wobei \displaystyle \,a\, und \displaystyle \,b\, reelle Zahlen sind.

a) \displaystyle (5-2i)+(3+5i) b) \displaystyle 3i -(2-i)
c) \displaystyle i(2+3i) d) \displaystyle (3-2i)(7+5i)
e) \displaystyle (1+i)(2-i)^2 f) \displaystyle i^{\,20} + i^{\,11}

Übung 3.1:2

Schreibe folgende komplexe Zahlen in der Form \displaystyle \,a+bi\,, wobei \displaystyle \,a\, und \displaystyle \,b\, reelle Zahlen sind.

a) \displaystyle \displaystyle\frac{3-2i}{1+i} b) \displaystyle \displaystyle\frac{3i}{4-6i} - \displaystyle\frac{1+i}{3+2i}
c) \displaystyle \displaystyle\frac{(2-i\sqrt{3}\,)^2}{1+i\sqrt{3}} d) \displaystyle \displaystyle\frac{5-\displaystyle\frac{1}{1+i}}{3i + \displaystyle\frac{i}{2-3i}}

Übung 3.1:3

Bestimme die reelle Zahl \displaystyle \,a\, so, dass der Ausdruck \displaystyle \ \displaystyle\frac{3+i}{2+ai}\ rein imaginär ist (also, dass der Realteil 0 ist).


Übung 3.1:4

Löse folgende Gleichungen.

a) \displaystyle z+3i=2z-2 b) \displaystyle (2-i) z= 3+2i
c) \displaystyle iz+2= 2z-3 d) \displaystyle (2+i) \overline{z} = 1+i
e) \displaystyle \displaystyle\frac{iz+1}{z+i} = 3+i f) \displaystyle (1+i)\overline{z}+iz = 3+5i


Diagnostische Prüfung und Schlussprüfung

Nachdem Du mit der Theorie und den Übungen fertig bist, sollst Du die diagnostische Prüfung und die Schlussprüfung machen. Du findest den Link zu den Prüfungen in Deiner Student Lounge.