Loading http://wiki.math.se/jsMath/extensions/bbox.js
Lösung 1.2:3f
Aus Online Mathematik Brückenkurs 2
Es gibt keine Regel, um die Funktion direkt abzuleiten. Stattdessen verwenden wir die Regel
![]() |
Das ergibt
![]() | (*) |
Jetzt leiten wir die Funktion mit der Kettenregel ab
\displaystyle \frac{d}{dx}\,e^{\bbox[#FFEEAA;,1.5pt]{\tan x\cdot\ln x}} = {}\rlap{e^{\bbox[#FFEEAA;,1.5pt]{\tan x\cdot\ln x}}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\tan x\cdot\ln x}\bigr)'}\phantom{e^{\tan x\cdot \ln x}\bigl((\tan x)'\cdot\ln x + \tan x\cdot (\ln x)'\bigr)} |
und verwenden die Faktorregel
\displaystyle \begin{align}
\phantom{\frac{d}{dx}\,e^{\bbox[#FFEEAA;,1.5pt]{\tan x\cdot\ln x}}}{} &= e^{\tan x\cdot \ln x}\bigl((\tan x)'\cdot\ln x + \tan x\cdot (\ln x)'\bigr)\\[5pt] &= e^{\tan x\cdot\ln x}\Bigl(\frac{1}{\cos^2\!x}\cdot\ln x + \tan x\cdot\frac{1}{x} \Bigr)\\[5pt] &= e^{\tan x\cdot\ln x}\Bigl(\frac{\ln x}{\cos^2\!x} + \frac{\tan x}{x}\Bigr)\\[5pt] &= x^{\tan x}\Bigl(\frac{\ln x}{\cos^2\!x} + \frac{\tan x}{x}\Bigr)\,, \end{align} |
wobei wir (*) rückwärts verwendet haben.