Lösung 2.2:4d
Aus Online Mathematik Brückenkurs 2
Der Integrand kann durch Polynomdivision vereinfacht werden. Wir addieren und subtrahieren 1 vom Zähler und erhalten so
\displaystyle \frac{x^2}{x^{2}+1} = \frac{x^2+1-1}{x^2+1} = \frac{x^2+1}{x^2+1} - \frac{1}{x^2+1} = 1-\frac{1}{x^2+1}\,\textrm{.} |
Daher ist
\displaystyle \int\frac{x^2}{x^2+1}\,dx = \int\Bigl(1-\frac{1}{x^2+1} \Bigr)\,dx = x-\arctan x+C\,\textrm{.} |