Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

3.3 Übungen

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
(Translated links into English)
Zeile 24: Zeile 24:
|width="50%"| <math>\displaystyle\frac{(1+i\sqrt{3}\,)(1-i)^8}{(\sqrt{3}-i)^9}</math>
|width="50%"| <math>\displaystyle\frac{(1+i\sqrt{3}\,)(1-i)^8}{(\sqrt{3}-i)^9}</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 3.3:1|Lösning a|Lösning 3.3:1a|Lösning b|Lösning 3.3:1b|Lösning c|Lösning 3.3:1c|Lösning d|Lösning 3.3:1d|Lösning e|Lösning 3.3:1e}}
+
</div>{{#NAVCONTENT:Answer|Svar 3.3:1|Solution a|Lösning 3.3:1a|Solution b|Lösning 3.3:1b|Solution c|Lösning 3.3:1c|Solution d|Lösning 3.3:1d|Solution e|Lösning 3.3:1e}}
===Exercise 3.3:2===
===Exercise 3.3:2===
Zeile 42: Zeile 42:
|width="33%"| <math>\displaystyle\Bigl(\frac{z+i}{z-i}\Bigr)^2 = -1</math>
|width="33%"| <math>\displaystyle\Bigl(\frac{z+i}{z-i}\Bigr)^2 = -1</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 3.3:2|Lösning a|Lösning 3.3:2a|Lösning b|Lösning 3.3:2b|Lösning c|Lösning 3.3:2c|Lösning d|Lösning 3.3:2d|Lösning e|Lösning 3.3:2e}}
+
</div>{{#NAVCONTENT:Answer|Svar 3.3:2|Solution a|Lösning 3.3:2a|Solution b|Lösning 3.3:2b|Solution c|Lösning 3.3:2c|Solution d|Lösning 3.3:2d|Solution e|Lösning 3.3:2e}}
===Exercise 3.3:3===
===Exercise 3.3:3===
Zeile 58: Zeile 58:
|width="50%"| <math>iz^2+(2+3i)z-1</math>
|width="50%"| <math>iz^2+(2+3i)z-1</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 3.3:3|Lösning a|Lösning 3.3:3a|Lösning b|Lösning 3.3:3b|Lösning c|Lösning 3.3:3c|Lösning d|Lösning 3.3:3d}}
+
</div>{{#NAVCONTENT:Answer|Svar 3.3:3|Solution a|Lösning 3.3:3a|Solution b|Lösning 3.3:3b|Solution c|Lösning 3.3:3c|Solution d|Lösning 3.3:3d}}
===Exercise 3.3:4===
===Exercise 3.3:4===
Zeile 74: Zeile 74:
|width="50%"| <math>\displaystyle\frac{1}{z} + z = \frac{1}{2}</math>
|width="50%"| <math>\displaystyle\frac{1}{z} + z = \frac{1}{2}</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 3.3:4|Lösning a|Lösning 3.3:4a|Lösning b|Lösning 3.3:4b|Lösning c|Lösning 3.3:4c|Lösning d|Lösning 3.3:4d}}
+
</div>{{#NAVCONTENT:Answer|Svar 3.3:4|Solution a|Lösning 3.3:4a|Solution b|Lösning 3.3:4b|Solution c|Lösning 3.3:4c|Solution d|Lösning 3.3:4d}}
===Exercise 3.3:5===
===Exercise 3.3:5===
Zeile 90: Zeile 90:
|width="50%"| <math>(4+i)z^2+(1-21i)z=17</math>
|width="50%"| <math>(4+i)z^2+(1-21i)z=17</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 3.3:5|Lösning a|Lösning 3.3:5a|Lösning b|Lösning 3.3:5b|Lösning c|Lösning 3.3:5c|Lösning d|Lösning 3.3:5d}}
+
</div>{{#NAVCONTENT:Answer|Svar 3.3:5|Solution a|Lösning 3.3:5a|Solution b|Lösning 3.3:5b|Solution c|Lösning 3.3:5c|Solution d|Lösning 3.3:5d}}
===Exercise 3.3:6===
===Exercise 3.3:6===
<div class="ovning">
<div class="ovning">
Determine the solution to <math>\,z^2=1+i\,</math> both in polar form and in the form <math>\,a+ib\,</math>, where <math>\,a\,</math> and <math>\,b\,</math> are real numbers. Use the result to calculate <math>\; \tan \frac{\pi}{8}\,</math>.
Determine the solution to <math>\,z^2=1+i\,</math> both in polar form and in the form <math>\,a+ib\,</math>, where <math>\,a\,</math> and <math>\,b\,</math> are real numbers. Use the result to calculate <math>\; \tan \frac{\pi}{8}\,</math>.
-
</div>{{#NAVCONTENT:Svar|Svar 3.3:6|Lösning |Lösning 3.3:6}}
+
</div>{{#NAVCONTENT:Answer|Svar 3.3:6|Solution|Lösning 3.3:6}}

Version vom 13:34, 5. Sep. 2008

 
  1. REDIRECT Template:Nicht gewählter Tab
  2. REDIRECT Template:Gewählter Tab
 

Exercise 3.3:1

Write the following number in the form a+ib, where a and b are real numbers:

a) (i+1)12 b) 21+i312 
c) (434i)22  d) 1+i1+i312 
e) (3i)9(1+i3)(1i)8

Exercise 3.3:2

Solve the equations

a) z4=1 b) z3=1 c) z5=1i
d) (z1)4+4=0 e) ziz+i2=1 

Exercise 3.3:3

Complete the square of the following expressions

a) z2+2z+3 b) z2+3iz41
c) z22iz+4z+1 d) iz2+(2+3i)z1

Exercise 3.3:4

Solve the equations

a) z2=i b) z24z+5=0
c) z2+2z+3=0 d) z1+z=21

Exercise 3.3:5

Solve the equations

a) z22(1+i)z+2i1=0 b) z2(2i)z+(3i)=0
c) z2(1+3i)z4+3i=0 d) (4+i)z2+(121i)z=17

Exercise 3.3:6

Determine the solution to z2=1+i both in polar form and in the form a+ib, where a and b are real numbers. Use the result to calculate tan8.