Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

2.2 Übungen

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-Övningar +Exercises))
K (Robot: Automated text replacement (-Svar +Answer))
Zeile 20: Zeile 20:
|width="100%"| <math>\displaystyle \int x^2 e^{x^3} \, dx\quad</math> by using the substitution <math>u=x^3</math>.
|width="100%"| <math>\displaystyle \int x^2 e^{x^3} \, dx\quad</math> by using the substitution <math>u=x^3</math>.
|}
|}
-
</div>{{#NAVCONTENT:Answer|Svar 2.2:1|Solution a|Lösning 2.2:1a|Solution b|Lösning 2.2:1b|Solution c|Lösning 2.2:1c}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.2:1|Solution a|Lösning 2.2:1a|Solution b|Lösning 2.2:1b|Solution c|Lösning 2.2:1c}}
===Exercise 2.2:2===
===Exercise 2.2:2===
Zeile 36: Zeile 36:
|width="50%"| <math>\displaystyle\int_{0}^{1} \sqrt[\scriptstyle3]{1 - x}\, dx</math>
|width="50%"| <math>\displaystyle\int_{0}^{1} \sqrt[\scriptstyle3]{1 - x}\, dx</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Svar 2.2:2|Solution a|Lösning 2.2:2a|Solution b|Lösning 2.2:2b|Solution c|Lösning 2.2:2c|Solution d|Lösning 2.2:2d}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.2:2|Solution a|Lösning 2.2:2a|Solution b|Lösning 2.2:2b|Solution c|Lösning 2.2:2c|Solution d|Lösning 2.2:2d}}
===Exercise 2.2:3===
===Exercise 2.2:3===
Zeile 57: Zeile 57:
|width="50%"| <math>\displaystyle\int \displaystyle\frac{\sin \sqrt{x}}{\sqrt{x}}\, dx</math>
|width="50%"| <math>\displaystyle\int \displaystyle\frac{\sin \sqrt{x}}{\sqrt{x}}\, dx</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Svar 2.2:3|Solution a|Lösning 2.2:3a|Solution b|Lösning 2.2:3b|Solution c|Lösning 2.2:3c|Solution d|Lösning 2.2:3d|Solution e|Lösning 2.2:3e|Solution f|Lösning 2.2:3f}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.2:3|Solution a|Lösning 2.2:3a|Solution b|Lösning 2.2:3b|Solution c|Lösning 2.2:3c|Solution d|Lösning 2.2:3d|Solution e|Lösning 2.2:3e|Solution f|Lösning 2.2:3f}}
===Exercise 2.2:4===
===Exercise 2.2:4===
Zeile 75: Zeile 75:
|width="50%"| <math>\displaystyle\int \frac{x^2}{x^2 +1}\, dx</math>
|width="50%"| <math>\displaystyle\int \frac{x^2}{x^2 +1}\, dx</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Svar 2.2:4|Solution a|Lösning 2.2:4a|Solution b|Lösning 2.2:4b|Solution c|Lösning 2.2:4c|Solution d|Lösning 2.2:4d}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.2:4|Solution a|Lösning 2.2:4a|Solution b|Lösning 2.2:4b|Solution c|Lösning 2.2:4c|Solution d|Lösning 2.2:4d}}

Version vom 14:13, 16. Sep. 2008

 
  1. REDIRECT Template:Nicht gewählter Tab
  2. REDIRECT Template:Gewählter Tab
 

Exercise 2.2:1

Calculate the integrals

a) 12dx(3x1)4  by using the substitution u=3x1,
b) (x2+3)5xdx  by using the substitution u=x2+3,
c) x2ex3dx  by using the substitution u=x3.

Exercise 2.2:2

Calculate the integrals

a) 0cos5xdx  b) 012e2x+3dx 
c) 053x+1dx  d) 0131xdx 

Exercise 2.2:3

Calculate the integrals

a) 2xsinx2dx  b) sinxcosxdx 
c) xlnxdx  d) x+1x2+2x+2dx 
e) 3xx2+1dx  f) xsinxdx 

Exercise 2.2:4

Use the formula

dxx2+1=arctanx+C 

to calculate the integrals

a) dxx2+4  b) dx(x1)2+3 
c) dxx2+4x+8  d) x2x2+1dx