2.2 Übungen

Aus Online Mathematik Brückenkurs 2

Wechseln zu: Navigation, Suche
       Theorie          Übungen      

Übung 2.2:1

Berechne die Integrale

a) \displaystyle \displaystyle \int_{1}^{2} \displaystyle\frac{dx}{(3x-1)^4}\quad durch die Substitution \displaystyle u=3x-1,
b) \displaystyle \displaystyle \int (x^2+3)^5x \, dx\quad durch die Substitution \displaystyle u=x^2+3,
c) \displaystyle \displaystyle \int x^2 e^{x^3} \, dx\quad durch die Substitution \displaystyle u=x^3.

Übung 2.2:2

Berechne die Integrale.

a) \displaystyle \displaystyle\int_{0}^{\pi} \cos 5x\, dx b) \displaystyle \displaystyle\int_{0}^{1/2} e^{2x+3}\, dx
c) \displaystyle \displaystyle\int_{0}^{5} \sqrt{3x + 1} \, dx d) \displaystyle \displaystyle\int_{0}^{1} \sqrt[\scriptstyle3]{1 - x}\, dx

Übung 2.2:3

Berechne die Integrale.

a) \displaystyle \displaystyle\int 2x \sin x^2\, dx b) \displaystyle \displaystyle\int \sin x \cos x\, dx
c) \displaystyle \displaystyle\int \displaystyle\frac{\ln x}{x}\, dx d) \displaystyle \displaystyle\int \displaystyle\frac{x+1}{x^2+2x+2}\, dx
e) \displaystyle \displaystyle\int \displaystyle\frac{3x}{x^2+1}\, dx f) \displaystyle \displaystyle\int \displaystyle\frac{\sin \sqrt{x}}{\sqrt{x}}\, dx

Übung 2.2:4

Verwende die Formel

\displaystyle \int \frac{dx}{x^2+1} = \arctan x + C,

um die Integrale zu berechnen.

a) \displaystyle \displaystyle\int \frac{dx}{x^2+4} b) \displaystyle \displaystyle\int \frac{dx}{(x-1)^2+3}
c) \displaystyle \displaystyle\int \frac{dx}{x^2+4x+8} d) \displaystyle \displaystyle\int \frac{x^2}{x^2 +1}\, dx


Diagnostische Prüfung und Schlussprüfung

Nachdem Du mit der Theorie und den Übungen fertig bist, sollst Du die diagnostische Prüfung und die Schlussprüfung machen. Du findest den Link zu den Prüfungen in Deiner Student Lounge.