Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Lösung 1.2:2f

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 1.2:2f moved to Solution 1.2:2f: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
The entire expression is made up of several levels,
-
<center> [[Image:1_2_2f-1(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
-
{{NAVCONTENT_START}}
+
<math>\cos \left\{ \left. \sqrt{\left\{ \left. 1-x \right\} \right.} \right\} \right.</math>
-
<center> [[Image:1_2_2f-2(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
 +
and when we differentiate we go from the outside inwards. In the first stage, we consider the expression as "cos of something",
 +
 
 +
 
 +
<math>\cos \left\{ \left. {} \right\} \right.</math>
 +
 
 +
 
 +
and differentiate this using the chain rule:
 +
 
 +
 
 +
<math>\frac{d}{dx}\cos \left\{ \left. \sqrt{1-x} \right\} \right.=-\sin \left\{ \left. \sqrt{1-x} \right\} \right.\centerdot \left( \left\{ \left. \sqrt{1-x} \right\} \right. \right)^{\prime }</math>
 +
 
 +
 
 +
In the next differentiation, we have "the root of something",
 +
 
 +
 
 +
<math>\left( \sqrt{\left\{ \left. 1-x \right\} \right.} \right)^{\prime }=\frac{1}{2\sqrt{1-x}}\centerdot \left( 1-x \right)^{\prime }</math>
 +
 
 +
 
 +
where we have used the differentiation rule,
 +
 
 +
 
 +
<math>\frac{d}{dx}\left( \sqrt{x} \right)=\frac{1}{2\sqrt{x}}</math>
 +
 
 +
 
 +
for the outer derivative.
 +
 
 +
The whole differentiation in one go becomes:
 +
 
 +
 
 +
<math>\begin{align}
 +
& \frac{d}{dx}\cos \sqrt{1-x}=-\sin \sqrt{1-x}\centerdot \frac{d}{dx}\sqrt{1-x} \\
 +
& =-\sin \sqrt{1-x}\centerdot \frac{1}{2\sqrt{1-x}}\centerdot \frac{d}{dx}\left( 1-x \right) \\
 +
& =-\sin \sqrt{1-x}\centerdot \frac{1}{2\sqrt{1-x}}\centerdot \left( -1 \right) \\
 +
& =\frac{\sin \sqrt{1-x}}{2\sqrt{1-x}} \\
 +
\end{align}</math>

Version vom 13:53, 11. Okt. 2008

The entire expression is made up of several levels,


cos1x 


and when we differentiate we go from the outside inwards. In the first stage, we consider the expression as "cos of something",


cos


and differentiate this using the chain rule:


ddxcos1x=sin1x1x 


In the next differentiation, we have "the root of something",


1x=121x1x 


where we have used the differentiation rule,


ddxx=12x 


for the outer derivative.

The whole differentiation in one go becomes:


ddxcos1x=sin1xddx1x=sin1x121xddx1x=sin1x121x1=21xsin1x