Processing Math: Done
Lösung 1.1:2f
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
- | We can rewrite the function using a trigonometric addition formula | + | We can rewrite the function using a trigonometric addition formula, |
+ | {{Displayed math||<math>f(x) = \cos\Bigl(x+\frac{\pi}{3}\Bigr) = \cos x\cdot\cos \frac{\pi}{3} - \sin x\cdot\sin\frac{\pi}{3}\,\textrm{.}</math>}} | ||
- | + | If we now differentiate this expression, <math>\cos (\pi/3)</math> and <math>\sin (\pi/3)</math> are constants and we obtain | |
- | + | ||
- | + | ||
- | If we now differentiate this expression, | + | |
- | <math>\cos | + | |
- | and | + | |
- | <math>\sin | + | |
- | are constants and we obtain | + | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
+ | {{Displayed math||<math>\begin{align} | ||
+ | f^{\,\prime}(x) | ||
+ | &= \frac{d}{dx}\,\Bigl(\cos x\cdot\cos\frac{\pi}{3} - \sin x\cdot\sin\frac{\pi}{3} \Bigr)\\[5pt] | ||
+ | &= \cos\frac{\pi}{3}\cdot\frac{d}{dx}\,\cos x - \sin\frac{\pi}{3}\cdot\frac{d}{dx}\,\sin x\\[5pt] | ||
+ | &= \cos\frac{\pi}{3}\cdot (-\sin x) - \sin\frac{\pi}{3}\cdot\cos x\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
If we then use the addition formula in reverse, this gives | If we then use the addition formula in reverse, this gives | ||
+ | {{Displayed math||<math>\begin{align} | ||
+ | f^{\,\prime}(x) | ||
+ | &= -\Bigl(\sin x\cdot\cos\frac{\pi}{3} + \cos x\cdot\sin\frac{\pi}{3}\Bigr)\\[5pt] | ||
+ | &= -\sin\Bigl(x+\frac{\pi}{3}\Bigr)\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
- | <math>\begin{align} | ||
- | & {f}'\left( x \right)=-\left( \sin x\centerdot \cos \frac{\pi }{3}+\cos x\centerdot \sin \frac{\pi }{3} \right) \\ | ||
- | & =-\sin \left( x+\frac{\pi }{3} \right) \\ | ||
- | \end{align}</math> | ||
- | + | Note: In the next section, we will go through differentiation rules which make it possible to differentiate the expression directly without rewriting in this way. |
Version vom 12:47, 14. Okt. 2008
We can rewrite the function using a trigonometric addition formula,
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
If we now differentiate this expression, 3)
3)
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
If we then use the addition formula in reverse, this gives
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Note: In the next section, we will go through differentiation rules which make it possible to differentiate the expression directly without rewriting in this way.