Processing Math: Done
Lösung 1.2:2e
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
- | One way to differentiate the expression could be to expand | + | One way to differentiate the expression could be to expand <math>(2x+1)^4</math> multiply by <math>x</math> and differentiate term by term, but it is simpler instead to use the structure of the expression and differentiate step by step using the differentiation rules. |
- | <math> | + | |
- | multiply by | + | |
- | <math>x</math> | + | |
- | and differentiate term by term, but it is simpler instead to use the structure of the expression and differentiate step by step using the differentiation rules. | + | |
- | To begin with, we have a product of | + | To begin with, we have a product of <math>x</math> and <math>(2x+1)^4</math> so the product rule gives that |
- | <math>x</math> | + | |
- | and | + | |
- | <math> | + | |
- | so the product rule gives that | + | |
+ | {{Displayed math||<math>\begin{align} | ||
+ | \frac{d}{dx}\,\bigl[x(2x+1)^4\bigr] | ||
+ | &= (x)'\cdot (2x+1)^4 + x\cdot \bigl((2x+1)^4\bigr)'\\[5pt] | ||
+ | &= 1\cdot (2x+1)^4 + x\cdot \bigl((2x+1)^4\bigr)'\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
- | <math> | + | We can differentiate the expression <math>(2x+1)^4</math> by viewing it as "something raised to the 4", |
- | + | ||
- | + | ||
- | + | ||
- | + | {{Displayed math||<math>\bbox[#FFEEAA;,1.5pt]{\phantom{(2x+1)}\!\!}^{\,4}\,\textrm{.}</math>}} | |
- | + | ||
- | + | ||
- | <math>\ | + | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
The chain rule then gives | The chain rule then gives | ||
- | + | {{Displayed math||<math>\begin{align} | |
- | <math>\begin{align} | + | \frac{d}{dx}\,\bigl[\bbox[#FFEEAA;,1.5pt]{\phantom{(2x+1)}\!\!}^{\,4}\bigr] |
- | + | &= 4\cdot \bbox[#FFEEAA;,1.5pt]{\phantom{(2x+1)}\!\!}^{\,3}\cdot \bbox[#FFEEAA;,1.5pt]{\phantom{(2x+1)}\!\!}^{\,\prime}\,,\\[5pt] | |
- | + | \frac{d}{dx}\,\bigl[(2x+1)^4\bigr] &= 4\cdot (2x+1)^3\cdot (2x+1)'\,\textrm{.} | |
- | \end{align}</math> | + | \end{align}</math>}} |
- | + | ||
We carry out the last differentiation directly, and obtain | We carry out the last differentiation directly, and obtain | ||
- | + | {{Displayed math||<math>(2x+1)' = 2\,\textrm{.}</math>}} | |
- | <math> | + | |
- | + | ||
If we go through the whole calculation from the beginning, it is | If we go through the whole calculation from the beginning, it is | ||
+ | {{Displayed math||<math>\begin{align} | ||
+ | \frac{d}{dx}\,\bigl[x(2x+1)^4\bigr] | ||
+ | &= (x)'\cdot (2x+1)^4 + x\cdot \bigl((2x+1)^4\bigr)'\\[2pt] | ||
+ | &= 1\cdot (2x+1)^4 + x\cdot 4(2x+1)^3\cdot (2x+1)'\\[5pt] | ||
+ | &= (2x+1)^4 + x\cdot 4(2x+1)^3\cdot 2\\[5pt] | ||
+ | &= (2x+1)^4 + 8x(2x+1)^3\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
- | + | Both terms contain a common factor <math>(2x+1)^3</math> which we can take out to get an answer in factorized form, | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | Both terms contain a common factor | + | |
- | <math> | + | |
- | which we can take out to get an answer in factorized form | + | |
- | + | ||
- | <math>\begin{align} | + | {{Displayed math||<math>\begin{align} |
- | + | \frac{d}{dx}\,\bigl[x(2x+1)^4\bigr] | |
- | & = | + | &= (2x+1)^3\bigl((2x+1)+8x\bigr)\\[5pt] |
- | \end{align}</math> | + | &= (2x+1)^3(10x+1)\,\textrm{.} |
+ | \end{align}</math>}} |
Version vom 08:56, 15. Okt. 2008
One way to differentiate the expression could be to expand
To begin with, we have a product of
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
We can differentiate the expression
The chain rule then gives
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
We carry out the last differentiation directly, and obtain
![]() |
If we go through the whole calculation from the beginning, it is
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Both terms contain a common factor
![]() ![]() ![]() ![]() |