Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 2.1:2d

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
If we rewrite
+
If we rewrite <math>\sqrt{x}</math> as <math>x^{1/2}</math>, the integrand can then be simplified using the power laws,
-
<math>\sqrt{x}</math>
+
-
as
+
-
<math>x^{{1}/{2}\;}</math>, the integrand can then be simplified using the power laws:
+
 +
{{Displayed math||<math>\int\limits_1^4 \frac{\sqrt{x}}{x^2}\,dx = \int\limits_1^4 \frac{x^{1/2}}{x^2}\,dx = \int\limits_1^4 x^{1/2-2}\,dx = \int\limits_1^4 x^{-3/2}\,dx\,\textrm{.}</math>}}
-
<math>\int\limits_{1}^{4}{\frac{\sqrt{x}}{x^{2}}}\,dx=\int\limits_{1}^{4}{\frac{x^{\frac{1}{2}}}{x^{2}}}\,dx=\int\limits_{1}^{4}{x^{\frac{1}{2}-2}}\,dx=\int\limits_{1}^{4}{x^{-\frac{3}{2}}}\,dx</math>
+
We can now use the fact that a primitive function for <math>x^{n}</math> is <math>x^{n+1}/(n+1)</math> and calculate the integral's value,
-
 
+
{{Displayed math||<math>\begin{align}
-
We can now use the fact that a primitive function for
+
\int\limits_1^4 x^{-3/2}\,dx
-
<math>x^{n}</math>
+
&= \Bigl[\ \frac{x^{-3/2+1}}{-3/2+1}\ \Bigr]_1^4\\[5pt]
-
is
+
&= \Bigl[\ \frac{x^{-1/2}}{-1/2}\ \Bigr]_1^4\\[5pt]
-
<math>\frac{x^{n+1}}{n+1}</math>
+
&= \Bigl[\ -2\frac{1}{x^{1/2}}\ \Bigr]_1^4\\[5pt]
-
and calculate the integral's value:
+
&= \Bigl[\ -\frac{2}{\sqrt{x}}\ \Bigr]_1^4\\[5pt]
-
 
+
&= -\frac{2}{\sqrt{4}} - \Bigl(-\frac{2}{\sqrt{1}}\Bigr)\\[5pt]
-
 
+
&= -\frac{2}{2}+2\\[5pt]
-
<math>\begin{align}
+
&= 1\,\textrm{.}
-
& \int\limits_{1}^{4}{x^{-\frac{3}{2}}}\,dx=\left[ \frac{x^{-\frac{3}{2}+1}}{^{-\frac{3}{2}+1}} \right]_{1}^{4} \\
+
\end{align}</math>}}
-
& =\left[ \frac{x^{-\frac{1}{2}}}{^{-\frac{1}{2}}} \right]_{1}^{4}=\left[ -2\frac{1}{x^{{1}/{2}\;}} \right]_{1}^{4} \\
+
-
& =\left[ -\frac{2}{\sqrt{x}} \right]_{1}^{4}=-\frac{2}{\sqrt{4}}-\left( -\frac{2}{\sqrt{1}} \right) \\
+
-
& =-\frac{2}{2}+2=1 \\
+
-
\end{align}</math>
+

Version vom 13:09, 21. Okt. 2008

If we rewrite x  as x12 , the integrand can then be simplified using the power laws,

41x2xdx=41x2x12dx=41x122dx=41x32dx. 

We can now use the fact that a primitive function for xn is xn+1(n+1) and calculate the integral's value,

41x32dx= x32+132+1 41= 12x12 41= 21x12 41= 2x 41=2421=22+2=1.