Lösung 2.3:2d
Aus Online Mathematik Brückenkurs 2
K (Lösning 2.3:2d moved to Solution 2.3:2d: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | { | + | We shall solve the exercise in two different ways. |
- | < | + | |
- | {{ | + | Method 1 (partial integration) |
- | {{ | + | |
- | < | + | As first sight, partial integration seems impossible, but the trick is to see the integrand as the product |
- | {{ | + | |
+ | |||
+ | <math>1\centerdot \ln x</math> | ||
+ | |||
+ | |||
+ | We integrate the factor | ||
+ | <math>\text{1}</math> | ||
+ | and differentiate | ||
+ | <math>\ln x</math>, | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \int{1\centerdot \ln x\,dx}=x\centerdot \ln x-\int{x\centerdot \frac{1}{x}\,dx} \\ | ||
+ | & =x\centerdot \ln x-\int{1\,dx} \\ | ||
+ | & =x\centerdot \ln x-x+C \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | Method 2 (substitution) | ||
+ | |||
+ | It seems difficult to find some suitable expression to substitute, so we try to substitute the whole expression | ||
+ | <math>u=\text{ln }x</math>. The problem we encounter is how we should handle the change from | ||
+ | <math>dx</math> | ||
+ | to | ||
+ | <math>du</math>. With this substitution, the relation between | ||
+ | <math>dx</math> | ||
+ | and | ||
+ | <math>du</math> | ||
+ | becomes | ||
+ | |||
+ | |||
+ | <math>du=\left( \ln x \right)^{\prime }\,dx=\frac{1}{x}\,dx</math> | ||
+ | |||
+ | |||
+ | and because | ||
+ | <math>u=\text{ln }x</math>, then | ||
+ | <math>x=e^{u}</math> | ||
+ | and we have that | ||
+ | |||
+ | |||
+ | <math>du=\frac{1}{e^{u}\,}\,dx\quad \Leftrightarrow \quad dx=e^{u}\,du</math> | ||
+ | |||
+ | |||
+ | Thus, the substitution becomes | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \int{\ln x\,dx}=\left\{ \begin{matrix} | ||
+ | u=\text{ln }x \\ | ||
+ | dx=e^{u}\,du \\ | ||
+ | \end{matrix} \right\} \\ | ||
+ | & =\int{ue^{u}\,du} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | Now, we carry out a partial integration | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \int{ue^{u}\,du}=u\centerdot e^{u}-\int{1\centerdot e^{u}\,du} \\ | ||
+ | & =u\centerdot e^{u}-\int{e^{u}\,du} \\ | ||
+ | & =u\centerdot e^{u}-e^{u}+C \\ | ||
+ | & =\left( u-1 \right)e^{u}+C \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | and the answer becomes | ||
+ | |||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \int{\ln x\,dx}=\left( \ln x-1 \right)e^{\ln x}+C \\ | ||
+ | & =\left( \ln x-1 \right)x+C \\ | ||
+ | \end{align}</math> |
Version vom 14:32, 22. Okt. 2008
We shall solve the exercise in two different ways.
Method 1 (partial integration)
As first sight, partial integration seems impossible, but the trick is to see the integrand as the product
lnx
We integrate the factor
1
lnxdx=x
lnx−
x
x1dx=x
lnx−
1dx=x
lnx−x+C
Method 2 (substitution)
It seems difficult to find some suitable expression to substitute, so we try to substitute the whole expression
lnx
dx=x1dx
and because
dx=eudu
Thus, the substitution becomes
lnxdx=
u=ln xdx=eudu
=
ueudu
Now, we carry out a partial integration
ueudu=u
eu−
1
eudu=u
eu−
eudu=u
eu−eu+C=
u−1
eu+C
and the answer becomes
lnxdx=
lnx−1
elnx+C=
lnx−1
x+C