Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Lösung 2.3:2d

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 2.3:2d moved to Solution 2.3:2d: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
We shall solve the exercise in two different ways.
-
<center> [[Image:2_3_2d-1(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
Method 1 (partial integration)
-
{{NAVCONTENT_START}}
+
 
-
<center> [[Image:2_3_2d-2(2).gif]] </center>
+
As first sight, partial integration seems impossible, but the trick is to see the integrand as the product
-
{{NAVCONTENT_STOP}}
+
 
 +
 
 +
<math>1\centerdot \ln x</math>
 +
 
 +
 
 +
We integrate the factor
 +
<math>\text{1}</math>
 +
and differentiate
 +
<math>\ln x</math>,
 +
 
 +
 
 +
<math>\begin{align}
 +
& \int{1\centerdot \ln x\,dx}=x\centerdot \ln x-\int{x\centerdot \frac{1}{x}\,dx} \\
 +
& =x\centerdot \ln x-\int{1\,dx} \\
 +
& =x\centerdot \ln x-x+C \\
 +
\end{align}</math>
 +
 
 +
 
 +
Method 2 (substitution)
 +
 
 +
It seems difficult to find some suitable expression to substitute, so we try to substitute the whole expression
 +
<math>u=\text{ln }x</math>. The problem we encounter is how we should handle the change from
 +
<math>dx</math>
 +
to
 +
<math>du</math>. With this substitution, the relation between
 +
<math>dx</math>
 +
and
 +
<math>du</math>
 +
becomes
 +
 
 +
 
 +
<math>du=\left( \ln x \right)^{\prime }\,dx=\frac{1}{x}\,dx</math>
 +
 
 +
 
 +
and because
 +
<math>u=\text{ln }x</math>, then
 +
<math>x=e^{u}</math>
 +
and we have that
 +
 
 +
 
 +
<math>du=\frac{1}{e^{u}\,}\,dx\quad \Leftrightarrow \quad dx=e^{u}\,du</math>
 +
 
 +
 
 +
Thus, the substitution becomes
 +
 
 +
 
 +
<math>\begin{align}
 +
& \int{\ln x\,dx}=\left\{ \begin{matrix}
 +
u=\text{ln }x \\
 +
dx=e^{u}\,du \\
 +
\end{matrix} \right\} \\
 +
& =\int{ue^{u}\,du} \\
 +
\end{align}</math>
 +
 
 +
 
 +
Now, we carry out a partial integration
 +
 
 +
 
 +
<math>\begin{align}
 +
& \int{ue^{u}\,du}=u\centerdot e^{u}-\int{1\centerdot e^{u}\,du} \\
 +
& =u\centerdot e^{u}-\int{e^{u}\,du} \\
 +
& =u\centerdot e^{u}-e^{u}+C \\
 +
& =\left( u-1 \right)e^{u}+C \\
 +
\end{align}</math>
 +
 
 +
 
 +
and the answer becomes
 +
 
 +
 
 +
 
 +
<math>\begin{align}
 +
& \int{\ln x\,dx}=\left( \ln x-1 \right)e^{\ln x}+C \\
 +
& =\left( \ln x-1 \right)x+C \\
 +
\end{align}</math>

Version vom 14:32, 22. Okt. 2008

We shall solve the exercise in two different ways.

Method 1 (partial integration)

As first sight, partial integration seems impossible, but the trick is to see the integrand as the product


1lnx


We integrate the factor 1 and differentiate lnx,


1lnxdx=xlnxxx1dx=xlnx1dx=xlnxx+C


Method 2 (substitution)

It seems difficult to find some suitable expression to substitute, so we try to substitute the whole expression u=ln x. The problem we encounter is how we should handle the change from dx to du. With this substitution, the relation between dx and du becomes


du=lnxdx=x1dx 


and because u=ln x, then x=eu and we have that


du=1eudxdx=eudu


Thus, the substitution becomes


lnxdx=u=ln xdx=eudu=ueudu 


Now, we carry out a partial integration


ueudu=ueu1eudu=ueueudu=ueueu+C=u1eu+C


and the answer becomes


lnxdx=lnx1elnx+C=lnx1x+C