Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 2.2:4c

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
The trick is to complete the square in the denominator so that we obtain the same expression as in exercise b,
The trick is to complete the square in the denominator so that we obtain the same expression as in exercise b,
 +
{{Displayed math||<math>\int \frac{dx}{x^2+4x+8} = \int \frac{dx}{(x+2)^2-2^2+8} = \int \frac{dx}{(x+2)^2+4}\,\textrm{.}</math>}}
-
<math>\int{\frac{\,dx}{x^{2}+4x+8}}=\int{\frac{\,dx}{\left( x+2 \right)^{2}-2^{2}+8}}=\int{\frac{\,dx}{\left( x+2 \right)^{2}+4}}</math>
+
We take out a factor 4 from the denominator
-
 
+
-
 
+
-
We take out a factor
+
-
<math>\text{4}</math>
+
-
from the denominator
+
-
 
+
-
 
+
-
<math>\int{\frac{\,dx}{\left( x+2 \right)^{2}+4}}=\int{\frac{\,dx}{4\left( \frac{1}{4}\left( x+2 \right)^{2}+1 \right)}}=\frac{1}{4}\int{\frac{\,dx}{\frac{1}{4}\left( x+2 \right)^{2}+1}}</math>
+
 +
{{Displayed math||<math>\int \frac{dx}{(x+2)^2+4} = \int \frac{dx}{4\bigl(\tfrac{1}{4}(x+2)^2+1\bigr)} = \frac{1}{4}\int \frac{dx}{\tfrac{1}{4}(x+2)^2+1}</math>}}
and rewrite the quadratic term as
and rewrite the quadratic term as
 +
{{Displayed math||<math>\frac{1}{4}\int \frac{dx}{\tfrac{1}{4}(x+2)^2+1} = \frac{1}{4}\int \frac{dx}{\Bigl(\dfrac{x+2}{2}\Bigr)^2+1}\,\textrm{.}</math>}}
-
<math>\frac{1}{4}\int{\frac{\,dx}{\frac{1}{4}\left( x+2 \right)^{2}+1}}=\frac{1}{4}\int{\frac{\,dx}{\left( \frac{x+2}{2} \right)^{2}+1}}</math>
+
If we now substitute <math>u = (x+2)/2</math>, we obtain the integral in the exercise
-
 
+
-
 
+
-
If we now substitute
+
-
<math>u=\frac{x+2}{2}</math>, we obtain the integral in the exercise
+
-
 
+
-
<math>\begin{align}
+
{{Displayed math||<math>\begin{align}
-
& \frac{1}{4}\int{\frac{\,dx}{\left( \frac{x+2}{2} \right)^{2}+1}}=\left\{ \begin{matrix}
+
\frac{1}{4}\int \frac{dx}{\Bigl(\dfrac{x+2}{2}\Bigr)^2+1}
-
u=\frac{x+2}{2} \\
+
&= \left\{\begin{align}
-
du=\frac{\,dx}{2} \\
+
u &= (x+2)/2\\[5pt]
-
\end{matrix} \right\} \\
+
du &= dx/2
-
& =\frac{1}{4}\int{\frac{\,2dx}{u^{2}+1}}=\frac{1}{2}\int{\frac{\,dx}{u^{2}+1}} \\
+
\end{align}\right\}\\[5pt]
-
& =\frac{1}{2}\arctan u+C \\
+
&= \frac{1}{4}\int \frac{2\,du}{u^2+1}\\[5pt]
-
& =\frac{1}{2}\arctan \frac{x+2}{2}+C \\
+
&= \frac{1}{2}\int \frac{du}{u^2+1}\\[5pt]
-
\end{align}</math>
+
&= \frac{1}{2}\arctan u + C\\[5pt]
 +
&= \frac{1}{2}\arctan \frac{x+2}{2} + C\,\textrm{.}
 +
\end{align}</math>}}

Version vom 15:27, 28. Okt. 2008

The trick is to complete the square in the denominator so that we obtain the same expression as in exercise b,

dxx2+4x+8=dx(x+2)222+8=dx(x+2)2+4. 

We take out a factor 4 from the denominator

dx(x+2)2+4=dx441(x+2)2+1=41dx41(x+2)2+1 

and rewrite the quadratic term as

41dx41(x+2)2+1=41dx2x+22+1. 

If we now substitute u=(x+2)2, we obtain the integral in the exercise

41dx2x+22+1=udu=(x+2)2=dx2=412duu2+1=21duu2+1=21arctanu+C=21arctan2x+2+C.