Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 2.3:1a

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
The formula for partial integration reads
+
The formula for integration by parts reads
 +
{{Displayed math||<math>\int f(x)g(x)\,dx = F(x)g(x) - \int F(x)g'(x)\,dx\,,</math>}}
-
<math>\int{f\left( x \right)}g\left( x \right)\,dx=F\left( x \right)g\left( x \right)-\int{F\left( x \right){g}'\left( x \right)\,dx}</math>,
+
where <math>F(x)</math> is a primitive function of <math>f(x)</math> and <math>g'(x)</math> is a derivative of <math>g(x)</math>.
-
where
+
If we are to use integration by parts, the integrand has to be divided up into two factors, a factor <math>f(x)</math> which we integrate and a factor <math>g(x)</math> which we differentiate. It is only when the product <math>F(x)g'(x)</math>
-
<math>F\left( x \right)</math>
+
becomes simpler than <math>f(x)g(x)</math> that there is any point in integrating by parts.
-
is a primitive function of
+
-
<math>f\left( x \right)</math>
+
-
and
+
-
<math>{g}'\left( x \right)</math>
+
-
is a derivative of
+
-
<math>g\left( x \right)</math>.
+
-
 
+
-
If we are to use partial integration, the integrand has to be divided up into two factors, a factor
+
-
<math>f\left( x \right)</math>
+
-
which we integrate and a factor
+
-
<math>g\left( x \right)</math>
+
-
which we differentiate. It is only when the product
+
-
<math>F\left( x \right){g}'\left( x \right)</math>
+
-
becomes simpler than
+
-
<math>f\left( x \right)g\left( x \right)</math>
+
-
that there is any point in partially integrating.
+
In the integral
In the integral
 +
{{Displayed math||<math>\int 2xe^{-x}\,dx\,,</math>}}
-
<math>\int{2xe^{-x}}\,dx</math>,
+
it can seem appropriate to choose <math>f(x)=e^{-x}</math> and <math>g(x) = 2x</math>, because then <math>g'(x) = 2</math> and we have only <math>F(x) = -e^{-x}</math> left,
-
 
+
-
it can seem appropriate to choose
+
-
<math>f\left( x \right)=e^{-x}</math>
+
-
and
+
-
<math>g\left( x \right)=2x</math>, because then
+
-
<math>{g}'\left( x \right)=2</math>
+
-
and we have only
+
-
<math>F\left( x \right)=-e^{-x}</math>
+
-
left,
+
-
 
+
-
 
+
-
<math>\begin{align}
+
-
& \int{2xe^{-x}}\,dx=2x\centerdot \left( -e^{-x} \right)-\int{2\centerdot }\left( -e^{-x} \right)\,dx \\
+
-
& =-2xe^{-x}+2\int{e^{-x}\,dx} \\
+
-
\end{align}</math>
+
-
 
+
-
It remains only to integrate
+
{{Displayed math||<math>\begin{align}
-
<math>e^{-x}</math>
+
\int 2x\cdot e^{-x}\,dx
-
and we are finished:
+
&= 2x\cdot \bigl(-e^{-x}\bigr) - \int 2\cdot \bigl(-e^{-x}\bigr)\,dx\\[5pt]
 +
&= -2xe^{-x} + 2\int e^{-x}\,dx\,\textrm{.}
 +
\end{align}</math>}}
 +
It remains only to integrate <math>e^{-x}</math> and we are finished,
-
<math>\begin{align}
+
{{Displayed math||<math>\begin{align}
-
& =-2xe^{-x}+2\left( -e^{-x} \right)+C \\
+
\phantom{\int 2x\cdot e^{-x}\,dx}{}
-
& =-2xe^{-x}-2e^{-x}+C \\
+
&= \rlap{-2xe^{-x} + 2\bigl(-e^{-x}\bigr) + C}\phantom{2x\cdot \bigl(-e^{-x}\bigr) - \int 2\cdot \bigl(-e^{-x}\bigr)\,dx}\\[5pt]
-
& =-2\left( x+1 \right)e^{-x}+C \\
+
&= -2xe^{-x} - 2e^{-x} + C\\[5pt]
-
\end{align}</math>
+
&= -2(x+1)e^{-x} + C\,\textrm{.}
 +
\end{align}</math>}}

Version vom 08:08, 29. Okt. 2008

The formula for integration by parts reads

f(x)g(x)dx=F(x)g(x)F(x)g(x)dx 

where F(x) is a primitive function of f(x) and g(x) is a derivative of g(x).

If we are to use integration by parts, the integrand has to be divided up into two factors, a factor f(x) which we integrate and a factor g(x) which we differentiate. It is only when the product F(x)g(x) becomes simpler than f(x)g(x) that there is any point in integrating by parts.

In the integral

2xexdx 

it can seem appropriate to choose f(x)=ex and g(x)=2x, because then g(x)=2 and we have only F(x)=ex left,

2xexdx=2xex2exdx=2xex+2exdx.

It remains only to integrate ex and we are finished,

=2xex+2ex+C=2xex2ex+C=2(x+1)ex+C.