Processing Math: Done
Lösung 2.3:1a
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
- | The formula for | + | The formula for integration by parts reads |
+ | {{Displayed math||<math>\int f(x)g(x)\,dx = F(x)g(x) - \int F(x)g'(x)\,dx\,,</math>}} | ||
- | <math> | + | where <math>F(x)</math> is a primitive function of <math>f(x)</math> and <math>g'(x)</math> is a derivative of <math>g(x)</math>. |
- | + | If we are to use integration by parts, the integrand has to be divided up into two factors, a factor <math>f(x)</math> which we integrate and a factor <math>g(x)</math> which we differentiate. It is only when the product <math>F(x)g'(x)</math> | |
- | + | becomes simpler than <math>f(x)g(x)</math> that there is any point in integrating by parts. | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | If we are to use | + | |
- | <math>f | + | |
- | which we integrate and a factor | + | |
- | <math>g | + | |
- | which we differentiate. It is only when the product | + | |
- | <math>F | + | |
- | becomes simpler than | + | |
- | <math>f | + | |
- | that there is any point in | + | |
In the integral | In the integral | ||
+ | {{Displayed math||<math>\int 2xe^{-x}\,dx\,,</math>}} | ||
- | + | it can seem appropriate to choose <math>f(x)=e^{-x}</math> and <math>g(x) = 2x</math>, because then <math>g'(x) = 2</math> and we have only <math>F(x) = -e^{-x}</math> left, | |
- | + | ||
- | it can seem appropriate to choose | + | |
- | <math>f | + | |
- | and | + | |
- | <math>g | + | |
- | <math> | + | |
- | and we have only | + | |
- | <math>F | + | |
- | left, | + | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | {{Displayed math||<math>\begin{align} | |
- | <math>e^{-x}</math> | + | \int 2x\cdot e^{-x}\,dx |
- | + | &= 2x\cdot \bigl(-e^{-x}\bigr) - \int 2\cdot \bigl(-e^{-x}\bigr)\,dx\\[5pt] | |
+ | &= -2xe^{-x} + 2\int e^{-x}\,dx\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
+ | It remains only to integrate <math>e^{-x}</math> and we are finished, | ||
- | <math>\begin{align} | + | {{Displayed math||<math>\begin{align} |
- | & =-2xe^{-x}+2\ | + | \phantom{\int 2x\cdot e^{-x}\,dx}{} |
- | & =-2xe^{-x}-2e^{-x}+C \\ | + | &= \rlap{-2xe^{-x} + 2\bigl(-e^{-x}\bigr) + C}\phantom{2x\cdot \bigl(-e^{-x}\bigr) - \int 2\cdot \bigl(-e^{-x}\bigr)\,dx}\\[5pt] |
- | & =-2 | + | &= -2xe^{-x} - 2e^{-x} + C\\[5pt] |
- | \end{align}</math> | + | &= -2(x+1)e^{-x} + C\,\textrm{.} |
+ | \end{align}</math>}} |
Version vom 08:08, 29. Okt. 2008
The formula for integration by parts reads
![]() ![]() ![]() ![]() |
where (x)
If we are to use integration by parts, the integrand has to be divided up into two factors, a factor (x)
In the integral
![]() ![]() |
it can seem appropriate to choose (x)=2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
It remains only to integrate
![]() ![]() |