Processing Math: Done
Lösung 3.3:2e
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
- | If we treat the expression | + | If we treat the expression <math>w=\frac{z+i}{z-i}</math> as an unknown, we have the equation |
- | <math>w=\frac{z+i}{z-i}</math> | + | |
- | as an unknown, we have the equation | + | |
- | + | ||
- | + | ||
- | + | ||
+ | {{Displayed math||<math>w^2=-1\,\textrm{.}</math>}} | ||
We know already that this equation has roots | We know already that this equation has roots | ||
+ | {{Displayed math||<math>w=\left\{\begin{align} | ||
+ | -i\,,&\\[5pt] | ||
+ | i\,,& | ||
+ | \end{align}\right.</math>}} | ||
- | + | so <math>z</math> should satisfy one of the equation's | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | so | + | |
- | <math>z | + | |
- | should satisfy one of the equation's | + | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
+ | {{Displayed math||<math>\frac{z+i}{z-i}=-i\quad</math> or <math>\quad\frac{z+i}{z-i}=i\,\textrm{.}</math>}} | ||
We solve these equations one by one. | We solve these equations one by one. | ||
- | <math> | + | *<math>(z+i)/(z-i)=-i</math>: |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
+ | :Multiply both sides by <math>z-i</math>, | ||
- | + | {{Displayed math||<math>z+i=-i(z-i)\,\textrm{.}</math>}} | |
- | <math> | + | |
+ | :Move all the <math>z</math>-terms over to the left-hand side and all the constants to the right-hand side, | ||
- | + | {{Displayed math||<math>z+iz=-1-i\,\textrm{.}</math>}} | |
- | <math>z-i</math> | + | |
+ | :This gives | ||
- | <math>z+i= | + | {{Displayed math||<math>z = \frac{-1-i}{1+i} = \frac{-(1+i)}{1+i} = -1\,\textrm{.}</math>}} |
- | + | *<math>(z+i)/(z-i)=i</math>: | |
+ | :Multiply both sides by <math>z-i</math>, | ||
- | <math>z | + | {{Displayed math||<math>z+i=i(z-i)\,\textrm{.}</math>}} |
+ | :Move all the <math>z</math>-terms over to the left-hand side and all the constants to the right-hand side, | ||
- | + | {{Displayed math||<math>z-iz=1-i\,\textrm{.}</math>}} | |
+ | :This gives | ||
- | <math>z=\frac{1-i}{1-i}=1</math> | + | {{Displayed math||<math>z = \frac{1-i}{1-i} = 1\,\textrm{.}</math>}} |
- | The solutions are therefore | + | The solutions are therefore <math>z=-1</math> and <math>z=1\,</math>. |
- | <math>z=- | + | |
- | and | + | |
- | <math>z=\ | + |
Version vom 13:21, 30. Okt. 2008
If we treat the expression
We know already that this equation has roots
![]() ![]() ![]() |
so
We solve these equations one by one.
(z+i) :(z−i)=−i
- Multiply both sides by
z−i ,
- Move all the
z -terms over to the left-hand side and all the constants to the right-hand side,
- This gives
(z+i) :(z−i)=i
- Multiply both sides by
z−i ,
- Move all the
z -terms over to the left-hand side and all the constants to the right-hand side,
- This gives
The solutions are therefore