Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 3.3:3c

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
If we take the minus sign out in front of the whole expression,
If we take the minus sign out in front of the whole expression,
-
 
+
{{Displayed math||<math>-\bigl(z^2+2iz-4z-1\bigr)\,,</math>}}
-
<math>-\left( z^{2}+2iz-4z-1 \right)</math>
+
-
 
+
and collect together the first-degree terms,
and collect together the first-degree terms,
 +
{{Displayed math||<math>-\bigl(z^2+(-4+2i)z-1\bigr)\,,</math>}}
-
<math>-\left( z^{2}+\left( -4+2i \right)z-1 \right)</math>
+
we can then complete the square of the expression inside the outer bracket,
-
 
+
-
 
+
-
we can then complete the square of the expression inside the outer bracket
+
-
 
+
-
 
+
-
<math>\begin{align}
+
{{Displayed math||<math>\begin{align}
-
& -\left( z^{2}+\left( -4+2i \right)z-1 \right)=-\left( \left( z+\frac{-4+2i}{2} \right)^{2}-\left( \frac{-4+2i}{2} \right)^{2}-1 \right) \\
+
-\bigl(z^2+(-4+2i)z-1\bigr)
-
& =-\left( \left( z-2+i \right)^{2}-\left( -2+i \right)^{2}-1 \right) \\
+
&= -\Bigl(\Bigl(z+\frac{-4+2i}{2}\Bigr)^2-\Bigl(\frac{-4+2i}{2}\Bigr)^2-1\Bigr)\\[5pt]
-
& =-\left( \left( z-2+i \right)^{2}-\left( -2 \right)^{2}+4i-i^{2}-1 \right) \\
+
&= -\bigl((z-2+i)^2-(-2+i)^2-1\bigr)\\[5pt]
-
& =-\left( \left( z-2+i \right)^{2}-4+4i+1-1 \right) \\
+
&= -\bigl((z-2+i)^2-(-2)^2+4i-i^2-1\bigr)\\[5pt]
-
& =-\left( \left( z-2+i \right)^{2}-4+4i \right) \\
+
&= -\bigl((z-2+i)^2-4+4i+1-1\bigr)\\[5pt]
-
& =-\left( z-2+i \right)^{2}+4-4i. \\
+
&= -\bigl((z-2+i)^2-4+4i\bigr)\\[5pt]
-
\end{align}</math>
+
&= -(z-2+i)^2+4-4i\,\textrm{.}
 +
\end{align}</math>}}

Version vom 13:45, 30. Okt. 2008

If we take the minus sign out in front of the whole expression,

z2+2iz4z1 

and collect together the first-degree terms,

z2+(4+2i)z1 

we can then complete the square of the expression inside the outer bracket,

z2+(4+2i)z1=z+24+2i224+2i21=(z2+i)2(2+i)21=(z2+i)2(2)2+4ii21=(z2+i)24+4i+11=(z2+i)24+4i=(z2+i)2+44i.