Processing Math: Done
Lösung 3.4:1c
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
- | If we focus on the leading term | + | If we focus on the leading term <math>x^3</math>, we need to complement it with <math>ax^2</math> in order to get a sub expression that is divisible by the denominator, |
- | <math>x^ | + | |
+ | {{Displayed math||<math>\frac{x^3+a^3}{x+a} = \frac{x^3+ax^2-ax^2+a^3}{x+a}\,\textrm{.}</math>}} | ||
- | <math> | + | With this form on the right-hand side, we can separate away the first two terms in the numerator and have left a polynomial quotient with <math>-ax^2+a^3</math> in the numerator, |
+ | {{Displayed math||<math>\begin{align} | ||
+ | \frac{x^3+ax^2-ax^2+a^3}{x+a} | ||
+ | &= \frac{x^3+ax^2}{x+a} + \frac{-ax^2+a^3}{x+a}\\[5pt] | ||
+ | &= \frac{x^2(x+a)}{x+a} + \frac{-ax^2+a^3}{x+a}\\[5pt] | ||
+ | &= x^2 + \frac{-ax^2+a^3}{x+a}\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
- | + | When we treat the new quotient, we add and take away <math>-a^2x</math> to/from <math>-ax^2</math> in order to get something divisible by <math>x+a</math>, | |
- | <math>-ax^ | + | |
- | + | ||
+ | {{Displayed math||<math>\begin{align} | ||
+ | x^2+\frac{-ax^2+a^3}{x+a} | ||
+ | &= x^2 + \frac{-ax^2-a^2x+a^2x+a^3}{x+a}\\[5pt] | ||
+ | &= x^2 + \frac{-ax^2-a^2x}{x+a} + \frac{a^2x+a^3}{x+a}\\[5pt] | ||
+ | &= x^2 + \frac{-ax(x+a)}{x+a} + \frac{a^2x+a^3}{x+a}\\[5pt] | ||
+ | &= x^2 - ax + \frac{a^2x+a^3}{x+a}\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
- | + | In the last quotient, the numerator has <math>x+a</math> as a factor, and we obtain a perfect division, | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | In the last quotient, the numerator has | + | |
- | <math>x+a</math> | + | |
- | as a factor, and we obtain a perfect division | + | |
- | + | ||
- | + | ||
- | + | ||
+ | {{Displayed math||<math>x^2 - ax + \frac{a^2x+a^3}{x+a} = x^2 - ax + \frac{a^2(x+a)}{x+a} = x^2-ax+a^2\,\textrm{.}</math>}} | ||
If we have calculated correctly, we should have | If we have calculated correctly, we should have | ||
+ | {{Displayed math||<math>\frac{x^3+a^3}{x+a} = x^2-ax+a^2</math>}} | ||
- | + | and one way to check the answer is to multiply both sides by <math>x+a</math>, | |
- | + | ||
- | + | ||
- | and one way to check the answer is to multiply both sides by | + | |
- | <math>x+a</math>, | + | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | {{Displayed math||<math>x^3+a^3 = (x^2-ax+a^2)(x+a)\,\textrm{.}</math>}} | |
+ | Then, expand the right-hand side and we should get what is on the left-hand side, | ||
- | <math>\begin{align} | + | {{Displayed math||<math>\begin{align} |
- | + | \text{RHS} | |
- | & =x^ | + | &= (x^2-ax+a^2)(x+a)\\[5pt] |
- | \end{align}</math> | + | &= x^3+ax^2-ax^2-a^2x+a^2x+a^3\\[5pt] |
+ | &= x^3+a^3\\[5pt] | ||
+ | &= \text{LHS.} | ||
+ | \end{align}</math>}} |
Version vom 12:11, 31. Okt. 2008
If we focus on the leading term
With this form on the right-hand side, we can separate away the first two terms in the numerator and have left a polynomial quotient with
When we treat the new quotient, we add and take away
In the last quotient, the numerator has
If we have calculated correctly, we should have
and one way to check the answer is to multiply both sides by
Then, expand the right-hand side and we should get what is on the left-hand side,