Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 1.1:2a

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
By using the rule for differentiation
By using the rule for differentiation
-
{{Displayed math||<math>\frac{d}{dx}\,x^{n}=nx^{n-1}</math>}}
+
{{Abgesetzte Formel||<math>\frac{d}{dx}\,x^{n}=nx^{n-1}</math>}}
and the fact that the expression can be differentiated term by term and that constant factors can be taken outside the differentiation, we obtain
and the fact that the expression can be differentiated term by term and that constant factors can be taken outside the differentiation, we obtain
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
f^{\,\prime}(x) &= \frac{d}{dx}\,\bigl(x^2-3x+1\bigr)\\[5pt]
f^{\,\prime}(x) &= \frac{d}{dx}\,\bigl(x^2-3x+1\bigr)\\[5pt]
&= \frac{d}{dx}\,x^2 - 3\frac{d}{dx}\,x^1 + \frac{d}{dx}\,1\\[5pt]
&= \frac{d}{dx}\,x^2 - 3\frac{d}{dx}\,x^1 + \frac{d}{dx}\,1\\[5pt]

Version vom 12:50, 10. Mär. 2009

By using the rule for differentiation

ddxxn=nxn1

and the fact that the expression can be differentiated term by term and that constant factors can be taken outside the differentiation, we obtain

f(x)=ddxx23x+1=ddxx23ddxx1+ddx1=2x2131x11+0=2x3.