Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Lösung 1.1:2e

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
We expand the quadratic expression as
We expand the quadratic expression as
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
f(x) &= \bigl(x^2-1\bigr)^2\\[5pt]
f(x) &= \bigl(x^2-1\bigr)^2\\[5pt]
&= \bigl(x^2\bigr)^2 - 2\cdot x^2\cdot 1 + 1^2\\[5pt]
&= \bigl(x^2\bigr)^2 - 2\cdot x^2\cdot 1 + 1^2\\[5pt]
Zeile 9: Zeile 9:
When the function is written in this form, it is easy to differentiate term by term,
When the function is written in this form, it is easy to differentiate term by term,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
f^{\,\prime}(x) &= \frac{d}{dx}\,\bigl(x^4-2x^2+1\bigr)\\[5pt]
f^{\,\prime}(x) &= \frac{d}{dx}\,\bigl(x^4-2x^2+1\bigr)\\[5pt]
&= \frac{d}{dx}\,x^4 - 2\frac{d}{dx}\,x^2 + \frac{d}{dx}\,1\\[5pt]
&= \frac{d}{dx}\,x^4 - 2\frac{d}{dx}\,x^2 + \frac{d}{dx}\,1\\[5pt]

Version vom 12:51, 10. Mär. 2009

We expand the quadratic expression as

f(x)=x212=x222x21+12=x42x2+1.

When the function is written in this form, it is easy to differentiate term by term,

f(x)=ddxx42x2+1=ddxx42ddxx2+ddx1=4x4122x21+0=4x34x=4x(x21).