Processing Math: Done
Lösung 1.1:2f
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
We can rewrite the function using a trigonometric addition formula, | We can rewrite the function using a trigonometric addition formula, | ||
- | {{ | + | {{Abgesetzte Formel||<math>f(x) = \cos\Bigl(x+\frac{\pi}{3}\Bigr) = \cos x\cdot\cos \frac{\pi}{3} - \sin x\cdot\sin\frac{\pi}{3}\,\textrm{.}</math>}} |
If we now differentiate this expression, <math>\cos (\pi/3)</math> and <math>\sin (\pi/3)</math> are constants and we obtain | If we now differentiate this expression, <math>\cos (\pi/3)</math> and <math>\sin (\pi/3)</math> are constants and we obtain | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
f^{\,\prime}(x) | f^{\,\prime}(x) | ||
&= \frac{d}{dx}\,\Bigl(\cos x\cdot\cos\frac{\pi}{3} - \sin x\cdot\sin\frac{\pi}{3} \Bigr)\\[5pt] | &= \frac{d}{dx}\,\Bigl(\cos x\cdot\cos\frac{\pi}{3} - \sin x\cdot\sin\frac{\pi}{3} \Bigr)\\[5pt] | ||
Zeile 14: | Zeile 14: | ||
If we then use the addition formula in reverse, this gives | If we then use the addition formula in reverse, this gives | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
f^{\,\prime}(x) | f^{\,\prime}(x) | ||
&= -\Bigl(\sin x\cdot\cos\frac{\pi}{3} + \cos x\cdot\sin\frac{\pi}{3}\Bigr)\\[5pt] | &= -\Bigl(\sin x\cdot\cos\frac{\pi}{3} + \cos x\cdot\sin\frac{\pi}{3}\Bigr)\\[5pt] |
Version vom 12:51, 10. Mär. 2009
We can rewrite the function using a trigonometric addition formula,
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
If we now differentiate this expression, 3)
3)
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
If we then use the addition formula in reverse, this gives
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Note: In the next section, we will go through differentiation rules which make it possible to differentiate the expression directly without rewriting in this way.