Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 1.1:2f

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
We can rewrite the function using a trigonometric addition formula,
We can rewrite the function using a trigonometric addition formula,
-
{{Displayed math||<math>f(x) = \cos\Bigl(x+\frac{\pi}{3}\Bigr) = \cos x\cdot\cos \frac{\pi}{3} - \sin x\cdot\sin\frac{\pi}{3}\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>f(x) = \cos\Bigl(x+\frac{\pi}{3}\Bigr) = \cos x\cdot\cos \frac{\pi}{3} - \sin x\cdot\sin\frac{\pi}{3}\,\textrm{.}</math>}}
If we now differentiate this expression, <math>\cos (\pi/3)</math> and <math>\sin (\pi/3)</math> are constants and we obtain
If we now differentiate this expression, <math>\cos (\pi/3)</math> and <math>\sin (\pi/3)</math> are constants and we obtain
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
f^{\,\prime}(x)
f^{\,\prime}(x)
&= \frac{d}{dx}\,\Bigl(\cos x\cdot\cos\frac{\pi}{3} - \sin x\cdot\sin\frac{\pi}{3} \Bigr)\\[5pt]
&= \frac{d}{dx}\,\Bigl(\cos x\cdot\cos\frac{\pi}{3} - \sin x\cdot\sin\frac{\pi}{3} \Bigr)\\[5pt]
Zeile 14: Zeile 14:
If we then use the addition formula in reverse, this gives
If we then use the addition formula in reverse, this gives
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
f^{\,\prime}(x)
f^{\,\prime}(x)
&= -\Bigl(\sin x\cdot\cos\frac{\pi}{3} + \cos x\cdot\sin\frac{\pi}{3}\Bigr)\\[5pt]
&= -\Bigl(\sin x\cdot\cos\frac{\pi}{3} + \cos x\cdot\sin\frac{\pi}{3}\Bigr)\\[5pt]

Version vom 12:51, 10. Mär. 2009

We can rewrite the function using a trigonometric addition formula,

f(x)=cosx+3=cosxcos3sinxsin3. 

If we now differentiate this expression, cos(3) and sin(3) are constants and we obtain

f(x)=ddxcosxcos3sinxsin3=cos3ddxcosxsin3ddxsinx=cos3(sinx)sin3cosx.

If we then use the addition formula in reverse, this gives

f(x)=sinxcos3+cosxsin3=sinx+3.


Note: In the next section, we will go through differentiation rules which make it possible to differentiate the expression directly without rewriting in this way.