Processing Math: Done
Lösung 1.2:1c
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
The expression is a quotient of two polynomials, <math>x^2+1</math> and <math>x+1</math>, and we therefore use the quotient rule for differentiation, | The expression is a quotient of two polynomials, <math>x^2+1</math> and <math>x+1</math>, and we therefore use the quotient rule for differentiation, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\Bigl(\frac{x^2+1}{x+1}\Bigr)' | \Bigl(\frac{x^2+1}{x+1}\Bigr)' | ||
&= \frac{(x^2+1)'\cdot (x+1) - (x^2+1)\cdot (x+1)'}{(x+1)^2}\\[5pt] | &= \frac{(x^2+1)'\cdot (x+1) - (x^2+1)\cdot (x+1)'}{(x+1)^2}\\[5pt] | ||
Zeile 12: | Zeile 12: | ||
Note: It is possible to rewrite the numerator by completing the square, | Note: It is possible to rewrite the numerator by completing the square, | ||
- | {{ | + | {{Abgesetzte Formel||<math>x^2+2x-1 = (x+1)^{2} - 1^2 - 1 = (x+1)^2 - 2</math>}} |
and then the answer can be written as | and then the answer can be written as | ||
- | {{ | + | {{Abgesetzte Formel||<math>\frac{x^2+2x-1}{(x+1)^2} = \frac{(x+1)^2-2}{(x+1)^2} = 1-\frac{2}{(x+1)^2}\,\textrm{.}</math>}} |
Version vom 12:52, 10. Mär. 2009
The expression is a quotient of two polynomials,
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Note: It is possible to rewrite the numerator by completing the square,
and then the answer can be written as