Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 1.2:1c

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
The expression is a quotient of two polynomials, <math>x^2+1</math> and <math>x+1</math>, and we therefore use the quotient rule for differentiation,
The expression is a quotient of two polynomials, <math>x^2+1</math> and <math>x+1</math>, and we therefore use the quotient rule for differentiation,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\Bigl(\frac{x^2+1}{x+1}\Bigr)'
\Bigl(\frac{x^2+1}{x+1}\Bigr)'
&= \frac{(x^2+1)'\cdot (x+1) - (x^2+1)\cdot (x+1)'}{(x+1)^2}\\[5pt]
&= \frac{(x^2+1)'\cdot (x+1) - (x^2+1)\cdot (x+1)'}{(x+1)^2}\\[5pt]
Zeile 12: Zeile 12:
Note: It is possible to rewrite the numerator by completing the square,
Note: It is possible to rewrite the numerator by completing the square,
-
{{Displayed math||<math>x^2+2x-1 = (x+1)^{2} - 1^2 - 1 = (x+1)^2 - 2</math>}}
+
{{Abgesetzte Formel||<math>x^2+2x-1 = (x+1)^{2} - 1^2 - 1 = (x+1)^2 - 2</math>}}
and then the answer can be written as
and then the answer can be written as
-
{{Displayed math||<math>\frac{x^2+2x-1}{(x+1)^2} = \frac{(x+1)^2-2}{(x+1)^2} = 1-\frac{2}{(x+1)^2}\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>\frac{x^2+2x-1}{(x+1)^2} = \frac{(x+1)^2-2}{(x+1)^2} = 1-\frac{2}{(x+1)^2}\,\textrm{.}</math>}}

Version vom 12:52, 10. Mär. 2009

The expression is a quotient of two polynomials, x2+1 and x+1, and we therefore use the quotient rule for differentiation,

x+1x2+1=(x+1)2(x2+1)(x+1)(x2+1)(x+1)=(x+1)22x(x+1)(x2+1)1=(x+1)22x2+2xx21=(x+1)2x2+2x1.


Note: It is possible to rewrite the numerator by completing the square,

x2+2x1=(x+1)2121=(x+1)22

and then the answer can be written as

(x+1)2x2+2x1=(x+1)2(x+1)22=12(x+1)2.