Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Lösung 1.2:3a

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
There is a "ln of something", so a first step in the differentiation is to take the derivative of the logarithm,
There is a "ln of something", so a first step in the differentiation is to take the derivative of the logarithm,
-
{{Displayed math||<math>\frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr) = {}\rlap{\frac{1}{\bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}}}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)'\,\textrm{.}}\phantom{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]}</math>}}
+
{{Abgesetzte Formel||<math>\frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr) = {}\rlap{\frac{1}{\bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}}}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)'\,\textrm{.}}\phantom{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]}</math>}}
We can carry out the differentiation of <math>\sqrt{x}+\sqrt{x+1}</math> on the right-hand side term by term to obtain
We can carry out the differentiation of <math>\sqrt{x}+\sqrt{x+1}</math> on the right-hand side term by term to obtain
-
{{Displayed math||<math>\phantom{\frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)}{} = {}\rlap{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \bigl[ (\sqrt{x})' + (\sqrt{x+1})'\bigr]}\phantom{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]}</math>}}
+
{{Abgesetzte Formel||<math>\phantom{\frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)}{} = {}\rlap{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \bigl[ (\sqrt{x})' + (\sqrt{x+1})'\bigr]}\phantom{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]}</math>}}
and it remains then only to differentiate <math>\sqrt{x}</math>, which we do directly, and <math>\sqrt{x+1}</math> (which has a simple inner derivative),
and it remains then only to differentiate <math>\sqrt{x}</math>, which we do directly, and <math>\sqrt{x+1}</math> (which has a simple inner derivative),
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\phantom{\frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)}{}
\phantom{\frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)}{}
&= \frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]\\[5pt]
&= \frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]\\[5pt]
Zeile 17: Zeile 17:
If we rewrite the expression inside the square brackets using a common denominator, we get
If we rewrite the expression inside the square brackets using a common denominator, we get
-
{{Displayed math||<math>\phantom{\frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)}{}
+
{{Abgesetzte Formel||<math>\phantom{\frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)}{}
= {}\rlap{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{\sqrt{x+1}+\sqrt{x}}{2\sqrt{x}\sqrt{x+1}} \Bigr]\,,}\phantom{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]}</math>}}
= {}\rlap{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{\sqrt{x+1}+\sqrt{x}}{2\sqrt{x}\sqrt{x+1}} \Bigr]\,,}\phantom{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]}</math>}}
and we can then eliminate the factor <math>\sqrt{x+1}+\sqrt{x}</math> from the numerator and denominator to get
and we can then eliminate the factor <math>\sqrt{x+1}+\sqrt{x}</math> from the numerator and denominator to get
-
{{Displayed math||<math>\phantom{\frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)}{}
+
{{Abgesetzte Formel||<math>\phantom{\frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)}{}
= {}\rlap{\frac{1}{2\sqrt{x}\sqrt{x+1}}\,\textrm{.}}\phantom{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]}</math>}}
= {}\rlap{\frac{1}{2\sqrt{x}\sqrt{x+1}}\,\textrm{.}}\phantom{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]}</math>}}

Version vom 12:53, 10. Mär. 2009

There is a "ln of something", so a first step in the differentiation is to take the derivative of the logarithm,

ddxlnx+x+1=1x+x+1x+x+1.

We can carry out the differentiation of x+x+1  on the right-hand side term by term to obtain

=1x+x+1(x)+(x+1) 

and it remains then only to differentiate x , which we do directly, and x+1  (which has a simple inner derivative),

=1x+x+112x+12x+1(x+1)=1x+x+112x+12x+11.

If we rewrite the expression inside the square brackets using a common denominator, we get

=1x+x+12xx+1x+1+x 

and we can then eliminate the factor x+1+x  from the numerator and denominator to get

=12xx+1.