Loading http://wiki.math.se/jsMath/extensions/bbox.js
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 1.2:3c

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
We can write the expression as
We can write the expression as
-
{{Displayed math||<math>\frac{1}{x\sqrt{1-x^{2}}} = \bigl(x\sqrt{1-x^2}\,\bigr)^{-1}\,\textrm{,}</math>}}
+
{{Abgesetzte Formel||<math>\frac{1}{x\sqrt{1-x^{2}}} = \bigl(x\sqrt{1-x^2}\,\bigr)^{-1}\,\textrm{,}</math>}}
and then we see that we have "something raised to -1", which can be differentiated one step by using the chain rule,
and then we see that we have "something raised to -1", which can be differentiated one step by using the chain rule,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\frac{d}{dx}\,\bigl( \bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)^{-1}
\frac{d}{dx}\,\bigl( \bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)^{-1}
&= {}\rlap{-1\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)^{-2}\bigl(\bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)'}\phantom{-\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} + x\cdot\frac{1}{2\sqrt{1-x^2}}(1-x^2)'\Bigr)}\\[5pt]
&= {}\rlap{-1\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)^{-2}\bigl(\bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)'}\phantom{-\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} + x\cdot\frac{1}{2\sqrt{1-x^2}}(1-x^2)'\Bigr)}\\[5pt]
Zeile 14: Zeile 14:
The next step is to differentiate the product <math>x\cdot\sqrt{1-x^2}</math> using the product rule,
The next step is to differentiate the product <math>x\cdot\sqrt{1-x^2}</math> using the product rule,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\phantom{\frac{d}{dx}\,\bigl( \bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)^{-1}}{}
\phantom{\frac{d}{dx}\,\bigl( \bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)^{-1}}{}
&= {}\rlap{-\frac{1}{x^2(1-x^2)}\cdot \Bigl( (x)'\sqrt{1-x^2} + x(\sqrt{1-x^2})'\Bigr)}\phantom{-\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} + x\cdot\frac{1}{2\sqrt{1-x^2}}(1-x^2)'\Bigr)}\\[5pt]
&= {}\rlap{-\frac{1}{x^2(1-x^2)}\cdot \Bigl( (x)'\sqrt{1-x^2} + x(\sqrt{1-x^2})'\Bigr)}\phantom{-\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} + x\cdot\frac{1}{2\sqrt{1-x^2}}(1-x^2)'\Bigr)}\\[5pt]
Zeile 22: Zeile 22:
The expression <math>\sqrt{1-x^2}</math> is of the type "square root of something", so we use the chain rule to differentiate,
The expression <math>\sqrt{1-x^2}</math> is of the type "square root of something", so we use the chain rule to differentiate,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\phantom{\frac{d}{dx}\,\bigl( \bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)^{-1}}{}
\phantom{\frac{d}{dx}\,\bigl( \bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)^{-1}}{}
&= -\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} + x\cdot\frac{1}{2\sqrt{1-x^2}}(1-x^2)'\Bigr)\\[5pt]
&= -\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} + x\cdot\frac{1}{2\sqrt{1-x^2}}(1-x^2)'\Bigr)\\[5pt]
Zeile 31: Zeile 31:
We write the expression on the right over a common denominator,
We write the expression on the right over a common denominator,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\phantom{\frac{d}{dx}\,\bigl( \bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)^{-1}}{}
\phantom{\frac{d}{dx}\,\bigl( \bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)^{-1}}{}
&= {}\rlap{-\frac{1}{x^2(1-x^2)}\cdot \frac{\bigl(\sqrt{1-x^2}\bigr)^2-x^2}{\sqrt{1-x^2}}}\phantom{-\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} + x\cdot\frac{1}{2\sqrt{1-x^2}}(1-x^2)'\Bigr)}\\[5pt]
&= {}\rlap{-\frac{1}{x^2(1-x^2)}\cdot \frac{\bigl(\sqrt{1-x^2}\bigr)^2-x^2}{\sqrt{1-x^2}}}\phantom{-\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} + x\cdot\frac{1}{2\sqrt{1-x^2}}(1-x^2)'\Bigr)}\\[5pt]

Version vom 12:54, 10. Mär. 2009

We can write the expression as

1x1x2=x1x21,

and then we see that we have "something raised to -1", which can be differentiated one step by using the chain rule,

\displaystyle \begin{align} \frac{d}{dx}\,\bigl( \bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)^{-1} &= {}\rlap{-1\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)^{-2}\bigl(\bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)'}\phantom{-\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} + x\cdot\frac{1}{2\sqrt{1-x^2}}(1-x^2)'\Bigr)}\\[5pt] &= -\frac{1}{\bigl(x\sqrt{1-x^2}\bigr)^2}\cdot \bigl(x\sqrt{1-x^2}\bigr)'\\[5pt] &= -\frac{1}{x^2(1-x^2)}\cdot\bigl(x\sqrt{1-x^2}\bigr)'\,\textrm{.} \end{align}

The next step is to differentiate the product \displaystyle x\cdot\sqrt{1-x^2} using the product rule,

\displaystyle \begin{align}

\phantom{\frac{d}{dx}\,\bigl( \bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)^{-1}}{} &= {}\rlap{-\frac{1}{x^2(1-x^2)}\cdot \Bigl( (x)'\sqrt{1-x^2} + x(\sqrt{1-x^2})'\Bigr)}\phantom{-\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} + x\cdot\frac{1}{2\sqrt{1-x^2}}(1-x^2)'\Bigr)}\\[5pt] &= -\frac{1}{x^2(1-x^2)}\cdot \Bigl(1\cdot\sqrt{1-x^2} + x\cdot (\sqrt{1-x^2})'\Bigr)\,\textrm{.} \end{align}

The expression \displaystyle \sqrt{1-x^2} is of the type "square root of something", so we use the chain rule to differentiate,

\displaystyle \begin{align}

\phantom{\frac{d}{dx}\,\bigl( \bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)^{-1}}{} &= -\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} + x\cdot\frac{1}{2\sqrt{1-x^2}}(1-x^2)'\Bigr)\\[5pt] &= -\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} + x\cdot\frac{1}{2\sqrt{1-x^2}}\cdot ( -2x)\Bigr)\\[5pt] &= -\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} - \frac{x^2}{\sqrt{1-x^2}}\Bigr)\,\textrm{.} \end{align}

We write the expression on the right over a common denominator,

\displaystyle \begin{align}

\phantom{\frac{d}{dx}\,\bigl( \bbox[#FFEEAA;,1.5pt]{x\sqrt{1-x^2}}\,\bigr)^{-1}}{} &= {}\rlap{-\frac{1}{x^2(1-x^2)}\cdot \frac{\bigl(\sqrt{1-x^2}\bigr)^2-x^2}{\sqrt{1-x^2}}}\phantom{-\frac{1}{x^2(1-x^2)}\Bigl(\sqrt{1-x^2} + x\cdot\frac{1}{2\sqrt{1-x^2}}(1-x^2)'\Bigr)}\\[5pt] &= -\frac{1}{x^2(1-x^2)}\cdot \frac{1-x^2-x^2}{\sqrt{1-x^2}}\\[5pt] &= -\frac{1-2x^2}{x^2(1-x^2)^{3/2}}\,\textrm{.} \end{align}


Note: When we make simplifications of the form \displaystyle \bigl(\sqrt{1-x^2} \bigr)^2 = 1-x^2, we assume that both sides are well defined (i.e. in this case that \displaystyle x lies between -1 and 1).