Processing Math: Done
Lösung 1.2:4a
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
We are to differentiate the expression two times, so we start by differentiating once. The quotient rule gives | We are to differentiate the expression two times, so we start by differentiating once. The quotient rule gives | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\frac{d}{dx}\,\frac{x}{\sqrt{1-x^2}} | \frac{d}{dx}\,\frac{x}{\sqrt{1-x^2}} | ||
&= {}\rlap{\frac{(x)'\sqrt{1-x^2}-x\bigl(\sqrt{1-x^2}\bigr)'}{\bigl(\sqrt{1-x^2}\bigr)^2}}\phantom{\frac{\sqrt{1-x^2}-x\cdot\dfrac{1}{2\sqrt{1-x^2}}\cdot\bigl(1-x^2\bigr)'}{1-x^2}}\\[5pt] | &= {}\rlap{\frac{(x)'\sqrt{1-x^2}-x\bigl(\sqrt{1-x^2}\bigr)'}{\bigl(\sqrt{1-x^2}\bigr)^2}}\phantom{\frac{\sqrt{1-x^2}-x\cdot\dfrac{1}{2\sqrt{1-x^2}}\cdot\bigl(1-x^2\bigr)'}{1-x^2}}\\[5pt] | ||
Zeile 9: | Zeile 9: | ||
We determine the derivative <math>\bigl(\sqrt{1-x^2}\bigr)'</math> by using the chain rule | We determine the derivative <math>\bigl(\sqrt{1-x^2}\bigr)'</math> by using the chain rule | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\phantom{\frac{d}{dx}\,\frac{x}{\sqrt{1-x^2}}}{} | \phantom{\frac{d}{dx}\,\frac{x}{\sqrt{1-x^2}}}{} | ||
&= \frac{\sqrt{1-x^2}-x\cdot\dfrac{1}{2\sqrt{1-x^2}}\cdot\bigl(1-x^2\bigr)'}{1-x^2}\\[5pt] | &= \frac{\sqrt{1-x^2}-x\cdot\dfrac{1}{2\sqrt{1-x^2}}\cdot\bigl(1-x^2\bigr)'}{1-x^2}\\[5pt] | ||
Zeile 17: | Zeile 17: | ||
We simplify the result as far as possible, so as to make the second differentiation easier, | We simplify the result as far as possible, so as to make the second differentiation easier, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\phantom{\frac{d}{dx}\,\frac{x}{\sqrt{1-x^2}}}{} | \phantom{\frac{d}{dx}\,\frac{x}{\sqrt{1-x^2}}}{} | ||
&= {}\rlap{\frac{\sqrt{1-x^2} + \dfrac{x^2}{\sqrt{1-x^2}}}{1-x^2}}\phantom{\frac{\sqrt{1-x^2}-x\cdot\dfrac{1}{2\sqrt{1-x^2}}\cdot\bigl(1-x^2\bigr)'}{1-x^2}}\\[5pt] | &= {}\rlap{\frac{\sqrt{1-x^2} + \dfrac{x^2}{\sqrt{1-x^2}}}{1-x^2}}\phantom{\frac{\sqrt{1-x^2}-x\cdot\dfrac{1}{2\sqrt{1-x^2}}\cdot\bigl(1-x^2\bigr)'}{1-x^2}}\\[5pt] | ||
Zeile 27: | Zeile 27: | ||
The second derivative is | The second derivative is | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\frac{d^2}{dx^2}\,\frac{x}{\sqrt{1-x^2}} | \frac{d^2}{dx^2}\,\frac{x}{\sqrt{1-x^2}} | ||
&= \frac{d}{dx}\,\frac{1}{(1-x^2)^{3/2}}\\[5pt] | &= \frac{d}{dx}\,\frac{1}{(1-x^2)^{3/2}}\\[5pt] |
Version vom 12:54, 10. Mär. 2009
We are to differentiate the expression two times, so we start by differentiating once. The quotient rule gives
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
We determine the derivative 1−x2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
We simplify the result as far as possible, so as to make the second differentiation easier,
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
The second derivative is
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |