Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Lösung 1.3:5

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 9: Zeile 9:
The area of the cross-section is
The area of the cross-section is
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
A(\alpha) &= 10\cdot 10\cos\alpha + 2\cdot\frac{1}{2}\cdot 10\cos\alpha \cdot 10\sin\alpha\\[5pt]
A(\alpha) &= 10\cdot 10\cos\alpha + 2\cdot\frac{1}{2}\cdot 10\cos\alpha \cdot 10\sin\alpha\\[5pt]
&= 100\cos \alpha (1+\sin\alpha)\,\textrm{.}
&= 100\cos \alpha (1+\sin\alpha)\,\textrm{.}
Zeile 23: Zeile 23:
We differentiate the area function:
We differentiate the area function:
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
A'(\alpha) &= 100\cdot (-\sin\alpha)\cdot (1+\sin\alpha) + 100\cdot\cos\alpha \cdot \cos\alpha\\[5pt]
A'(\alpha) &= 100\cdot (-\sin\alpha)\cdot (1+\sin\alpha) + 100\cdot\cos\alpha \cdot \cos\alpha\\[5pt]
&= -100\sin\alpha - 100\sin^2\!\alpha + 100\cos^2\!\alpha\,\textrm{.}
&= -100\sin\alpha - 100\sin^2\!\alpha + 100\cos^2\!\alpha\,\textrm{.}
Zeile 30: Zeile 30:
At a critical point <math>A'(\alpha)=0</math> and this gives us the equation
At a critical point <math>A'(\alpha)=0</math> and this gives us the equation
-
{{Displayed math||<math>\sin\alpha + \sin^2\!\alpha - \cos^2\!\alpha = 0</math>}}
+
{{Abgesetzte Formel||<math>\sin\alpha + \sin^2\!\alpha - \cos^2\!\alpha = 0</math>}}
after eliminating the factor -100. We replace <math>\cos^2\!\alpha</math> with <math>1-\sin^2\!\alpha</math> (according to the Pythagorean identity) to obtain an equation solely in <math>\sin\alpha\,</math>,
after eliminating the factor -100. We replace <math>\cos^2\!\alpha</math> with <math>1-\sin^2\!\alpha</math> (according to the Pythagorean identity) to obtain an equation solely in <math>\sin\alpha\,</math>,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\sin\alpha + \sin^2\!\alpha - (1-\sin^2\!\alpha) &= 0\\[5pt]
\sin\alpha + \sin^2\!\alpha - (1-\sin^2\!\alpha) &= 0\\[5pt]
2\sin^2\!\alpha + \sin\alpha - 1 &= 0\,\textrm{.}
2\sin^2\!\alpha + \sin\alpha - 1 &= 0\,\textrm{.}
Zeile 41: Zeile 41:
This is a second-degree equation in <math>\sin\alpha</math> and completing the square gives that
This is a second-degree equation in <math>\sin\alpha</math> and completing the square gives that
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
2\bigl(\sin\alpha + \tfrac{1}{4}\bigr)^{2} - 2\bigl(\tfrac{1}{4}\bigr)^2 - 1 &= 0\\[5pt]
2\bigl(\sin\alpha + \tfrac{1}{4}\bigr)^{2} - 2\bigl(\tfrac{1}{4}\bigr)^2 - 1 &= 0\\[5pt]
\bigl(\sin\alpha + \tfrac{1}{4}\bigr)^2 &= \frac{9}{16}
\bigl(\sin\alpha + \tfrac{1}{4}\bigr)^2 &= \frac{9}{16}
Zeile 53: Zeile 53:
If we summarize, we know therefore that the cross-sectional area has local minimum points at <math>\alpha = 0</math> and <math>\alpha = \pi/2</math> and that we have a critical point at <math>\alpha = \pi/6\,</math>. This critical point must be a maximum, which we can also show using the second derivative,
If we summarize, we know therefore that the cross-sectional area has local minimum points at <math>\alpha = 0</math> and <math>\alpha = \pi/2</math> and that we have a critical point at <math>\alpha = \pi/6\,</math>. This critical point must be a maximum, which we can also show using the second derivative,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
A''(\alpha) &= -100\cos\alpha - 100\cdot 2\sin\alpha\cdot\cos\alpha + 100\cdot 2\cos\alpha \cdot (-\sin\alpha)\\[5pt]
A''(\alpha) &= -100\cos\alpha - 100\cdot 2\sin\alpha\cdot\cos\alpha + 100\cdot 2\cos\alpha \cdot (-\sin\alpha)\\[5pt]
&= -100\cos\alpha (1+4\sin\alpha)\,,
&= -100\cos\alpha (1+4\sin\alpha)\,,
Zeile 60: Zeile 60:
which is negative at <math>\alpha = \pi/6</math>,
which is negative at <math>\alpha = \pi/6</math>,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
A''(\pi/6) &= -100\cos\frac{\pi}{6}\cdot \Bigl(1+4\sin\frac{\pi}{6}\Bigr)\\[5pt]
A''(\pi/6) &= -100\cos\frac{\pi}{6}\cdot \Bigl(1+4\sin\frac{\pi}{6}\Bigr)\\[5pt]
&= -100\cdot\frac{\sqrt{3}}{2}\cdot \Bigl( 1+4\cdot \frac{1}{2} \Bigr)<0\,\textrm{.}
&= -100\cdot\frac{\sqrt{3}}{2}\cdot \Bigl( 1+4\cdot \frac{1}{2} \Bigr)<0\,\textrm{.}

Version vom 12:56, 10. Mär. 2009

The channel holds most water when its cross-sectional area is greatest.

By dividing up the channel's cross-section into a rectangle and two triangles we can, with the help of a little trigonometry, determine the lengths of the rectangle's and triangles' sides, and thence the cross-sectional area.

The area of the cross-section is

A()=1010cos+22110cos10sin=100cos(1+sin).

If we limit the angle to lie between 0 and 2, the problem can be formulated as:

Maximise the function A()=100cos(1+sin) when

02.

The area function is a differentiable function and the area is least when =0 or =2, so the area must assume its maximum at a critical point of the area function.

We differentiate the area function:

A()=100(sin)(1+sin)+100coscos=100sin100sin2+100cos2.

At a critical point A()=0 and this gives us the equation

sin+sin2cos2=0

after eliminating the factor -100. We replace cos2 with 1sin2 (according to the Pythagorean identity) to obtain an equation solely in sin,

sin+sin2(1sin2)2sin2+sin1=0=0.

This is a second-degree equation in sin and completing the square gives that

2sin+41224121sin+412=0=916

and we obtain sin=4143, i.e. sin=1 or sin=21.

The case sin=1 is not satisfied for 02 and sin=21 gives =6. Thus =6 is a critical point.


If we summarize, we know therefore that the cross-sectional area has local minimum points at =0 and =2 and that we have a critical point at =6. This critical point must be a maximum, which we can also show using the second derivative,

A()=100cos1002sincos+1002cos(sin)=100cos(1+4sin)

which is negative at =6,

A(6)=100cos61+4sin6=100231+4210.

There are no local maximum points other than =6, which must therefore also be a global maximum.