Lösung 1.3:7
Aus Online Mathematik Brückenkurs 2
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 9: | Zeile 9: | ||
With these dimensions, the volume of the cornet will be the same as that of a cone, | With these dimensions, the volume of the cornet will be the same as that of a cone, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
V &= \frac{1}{3}\text{(area of upper circle)}\cdot\text{(height)}\\[5pt] | V &= \frac{1}{3}\text{(area of upper circle)}\cdot\text{(height)}\\[5pt] | ||
&= \frac{1}{3}\pi r^{2}h\,\textrm{.} | &= \frac{1}{3}\pi r^{2}h\,\textrm{.} | ||
Zeile 24: | Zeile 24: | ||
<math>2\pi r</math>, so we must therefore have the relation | <math>2\pi r</math>, so we must therefore have the relation | ||
- | {{ | + | {{Abgesetzte Formel||<math>2\pi r = (2\pi-\alpha)R\quad\Leftrightarrow\quad r = \frac{2\pi -\alpha}{2\pi}\,R\,\textrm{.}</math>}} |
We have thus managed to express the radius <math>r</math> in terms of the angle | We have thus managed to express the radius <math>r</math> in terms of the angle | ||
Zeile 35: | Zeile 35: | ||
This means that | This means that | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
h &= \sqrt{R^2-\Bigl(\frac{2\pi-\alpha}{2\pi}\,R\Bigr)^2}\\[5pt] | h &= \sqrt{R^2-\Bigl(\frac{2\pi-\alpha}{2\pi}\,R\Bigr)^2}\\[5pt] | ||
&= \sqrt{R^2-\Bigl(\frac{2\pi-\alpha}{2\pi}\Bigr)^2R^2}\\[5pt] | &= \sqrt{R^2-\Bigl(\frac{2\pi-\alpha}{2\pi}\Bigr)^2R^2}\\[5pt] | ||
Zeile 44: | Zeile 44: | ||
<math>\alpha</math> and the radius <math>R</math>, and we get that the volume of the cornet is given by | <math>\alpha</math> and the radius <math>R</math>, and we get that the volume of the cornet is given by | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
V &= \frac{1}{3}\pi r^2 h\\[5pt] | V &= \frac{1}{3}\pi r^2 h\\[5pt] | ||
&= \frac{1}{3}\pi \Bigl(\frac{2\pi-\alpha}{2\pi}R\Bigr)^2 R\sqrt{1-\Bigl( \frac{2\pi-\alpha}{2\pi}\Bigr)^2}\\[5pt] | &= \frac{1}{3}\pi \Bigl(\frac{2\pi-\alpha}{2\pi}R\Bigr)^2 R\sqrt{1-\Bigl( \frac{2\pi-\alpha}{2\pi}\Bigr)^2}\\[5pt] | ||
Zeile 64: | Zeile 64: | ||
We differentiate, | We differentiate, | ||
- | {{ | + | {{Abgesetzte Formel||<math>V'(x) = \frac{1}{3}\pi R^3\cdot 2x\cdot \sqrt{1-x^2} + \frac{1}{3}\pi R^3x^2\cdot\frac{1}{2\sqrt{1-x^2}}\cdot (-2x)\,,</math>}} |
and begin simplifying this expression. The strategy is to try to take out as many factors as possible, so that we see more easily when some factor, and hence the derivative, becomes zero, | and begin simplifying this expression. The strategy is to try to take out as many factors as possible, so that we see more easily when some factor, and hence the derivative, becomes zero, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
V'(x) &= \frac{2}{3}\pi R^3x\sqrt{1-x^2} - \frac{1}{3}\pi R^3x^3\frac{1}{\sqrt{1-x^2}}\\[5pt] | V'(x) &= \frac{2}{3}\pi R^3x\sqrt{1-x^2} - \frac{1}{3}\pi R^3x^3\frac{1}{\sqrt{1-x^2}}\\[5pt] | ||
&= \frac{1}{3}\pi R^3\frac{x}{\sqrt{1-x^2}}\bigl[ 2(1-x^2)-x^2\bigr]\\[5pt] | &= \frac{1}{3}\pi R^3\frac{x}{\sqrt{1-x^2}}\bigl[ 2(1-x^2)-x^2\bigr]\\[5pt] | ||
Zeile 141: | Zeile 141: | ||
and see that <math>x=\sqrt{2/3}</math> is a global maximum. The value <math>x = \sqrt{2/3}</math> corresponds to the <math>\alpha</math>-value | and see that <math>x=\sqrt{2/3}</math> is a global maximum. The value <math>x = \sqrt{2/3}</math> corresponds to the <math>\alpha</math>-value | ||
- | {{ | + | {{Abgesetzte Formel||<math>\sqrt{\frac{2}{3}}=\frac{2\pi-\alpha }{2\pi}\quad \Leftrightarrow\quad \alpha = 2\pi \bigl(1-\sqrt{2/3}\,\bigr)\ \text{radians.}</math>}} |
Version vom 12:57, 10. Mär. 2009
The whole procedure can be illustrated by the figure below:
Because it is the cornet's volume we want to maximise, it is appropriate to start by introducing some notation for the dimensions of the cornet.
With these dimensions, the volume of the cornet will be the same as that of a cone,
![]() ![]() |
To go further, we now need to express the radius
When we cut out a circular sector of angle −
)R
On the other hand, the cornet's upper circular edge has a circumference
r
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
We have thus managed to express the radius
In order to obtain the height
This means that
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Hence, we have expressed
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
At last, we can mathematically formulate the problem:
- Maximise
V( , where)=31
R3
2
2
−
2
1−
2
2
−
2
0 .2
- Maximise
Before we start to try and solve this problem, we can observe that the variable
−
)
2
−
)
2
- Maximise
V(x)=31 , whenR3x2
1−x2
0 .x
1
- Maximise
When either
We differentiate,
\displaystyle V'(x) = \frac{1}{3}\pi R^3\cdot 2x\cdot \sqrt{1-x^2} + \frac{1}{3}\pi R^3x^2\cdot\frac{1}{2\sqrt{1-x^2}}\cdot (-2x)\,, |
and begin simplifying this expression. The strategy is to try to take out as many factors as possible, so that we see more easily when some factor, and hence the derivative, becomes zero,
\displaystyle \begin{align}
V'(x) &= \frac{2}{3}\pi R^3x\sqrt{1-x^2} - \frac{1}{3}\pi R^3x^3\frac{1}{\sqrt{1-x^2}}\\[5pt] &= \frac{1}{3}\pi R^3\frac{x}{\sqrt{1-x^2}}\bigl[ 2(1-x^2)-x^2\bigr]\\[5pt] &= \frac{1}{3}\pi R^3\frac{x}{\sqrt{1-x^2}}(2-3x^2)\,\textrm{.} \end{align} |
The derivative is zero when \displaystyle x=0 (which is an endpoint) or when \displaystyle 2-3x^2=0, i.e. \displaystyle x=\sqrt{2/3}\,. (The point \displaystyle x=-\sqrt{2/3} lies outside \displaystyle 0\le x\le 1.)
With the help of a table of the sign of the factors,
\displaystyle x | \displaystyle 0 | \displaystyle \sqrt{\tfrac{2}{3}} | \displaystyle 1 | ||
\displaystyle x | \displaystyle 0 | \displaystyle + | \displaystyle + | \displaystyle + | \displaystyle + |
\displaystyle \sqrt{1-x^2} | \displaystyle + | \displaystyle + | \displaystyle + | \displaystyle + | \displaystyle 0 |
\displaystyle 2-3x^2 | \displaystyle + | \displaystyle + | \displaystyle 0 | \displaystyle - | \displaystyle - |
we can write down a table of the sign of the derivative itself,
\displaystyle x | \displaystyle 0 | \displaystyle \sqrt{\tfrac{2}{3}} | \displaystyle 1 | ||
\displaystyle V'(x) | \displaystyle 0 | \displaystyle + | \displaystyle 0 | \displaystyle - | |
\displaystyle V(x) | \displaystyle 0 | \displaystyle \nearrow | \displaystyle \tfrac{4}{9\sqrt{3}}\pi R^3 | \displaystyle \searrow | \displaystyle 0 |
and see that \displaystyle x=\sqrt{2/3} is a global maximum. The value \displaystyle x = \sqrt{2/3} corresponds to the \displaystyle \alpha-value
\displaystyle \sqrt{\frac{2}{3}}=\frac{2\pi-\alpha }{2\pi}\quad \Leftrightarrow\quad \alpha = 2\pi \bigl(1-\sqrt{2/3}\,\bigr)\ \text{radians.} |