Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Lösung 2.1:1d

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
The modulus function, <math>|x|</math>, strips <math>x</math> of its sign, e.g.
The modulus function, <math>|x|</math>, strips <math>x</math> of its sign, e.g.
-
{{Displayed math||<math>|-5|=5\,</math>, <math>\quad|3|=3\quad</math> and <math>\quad |-\pi|=\pi\,</math>.}}
+
{{Abgesetzte Formel||<math>|-5|=5\,</math>, <math>\quad|3|=3\quad</math> and <math>\quad |-\pi|=\pi\,</math>.}}
For positive values of <math>x</math>, the modulus function has no effect, since
For positive values of <math>x</math>, the modulus function has no effect, since
Zeile 19: Zeile 19:
This region consists of two triangles and we therefore obtain
This region consists of two triangles and we therefore obtain
-
{{Displayed math||<math>\int\limits_{-1}^{2} |x|\,dx = \frac{1}{2}\cdot 1\cdot 1 + \frac{1}{2}\cdot 2\cdot 2 = \frac{5}{2}\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>\int\limits_{-1}^{2} |x|\,dx = \frac{1}{2}\cdot 1\cdot 1 + \frac{1}{2}\cdot 2\cdot 2 = \frac{5}{2}\,\textrm{.}</math>}}

Version vom 12:57, 10. Mär. 2009

The modulus function, x, strips x of its sign, e.g.

5=5, 3=3 and =.

For positive values of x, the modulus function has no effect, since x=x, but for negative x the modulus function changes the sign of x, i.e. x=x (remember that x is negative and therefore x is positive).

If we draw a graph of y=x it will consist of two parts. For x0 we have y=x, and for x0 we have y=x.

The value of the integral is the area of the region under the graph y=x and between x=1 and x=2.

This region consists of two triangles and we therefore obtain

21xdx=2111+2122=25.