Processing Math: Done
Lösung 2.1:1d
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
The modulus function, <math>|x|</math>, strips <math>x</math> of its sign, e.g. | The modulus function, <math>|x|</math>, strips <math>x</math> of its sign, e.g. | ||
- | {{ | + | {{Abgesetzte Formel||<math>|-5|=5\,</math>, <math>\quad|3|=3\quad</math> and <math>\quad |-\pi|=\pi\,</math>.}} |
For positive values of <math>x</math>, the modulus function has no effect, since | For positive values of <math>x</math>, the modulus function has no effect, since | ||
Zeile 19: | Zeile 19: | ||
This region consists of two triangles and we therefore obtain | This region consists of two triangles and we therefore obtain | ||
- | {{ | + | {{Abgesetzte Formel||<math>\int\limits_{-1}^{2} |x|\,dx = \frac{1}{2}\cdot 1\cdot 1 + \frac{1}{2}\cdot 2\cdot 2 = \frac{5}{2}\,\textrm{.}</math>}} |
Version vom 12:57, 10. Mär. 2009
The modulus function, x
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
For positive values of x
=x
x
=−x
If we draw a graph of x
0
0
The value of the integral is the area of the region under the graph x
This region consists of two triangles and we therefore obtain
![]() ![]() ![]() ![]() ![]() ![]() ![]() |