Processing Math: Done
Lösung 2.1:2c
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
If we recall that <math>\sqrt{x} = x^{1/2}</math>, the integral can be written as | If we recall that <math>\sqrt{x} = x^{1/2}</math>, the integral can be written as | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\int\limits_{4}^{9} \bigl(\sqrt{x}-\frac{1}{\sqrt{x}}\Bigr)\,dx | \int\limits_{4}^{9} \bigl(\sqrt{x}-\frac{1}{\sqrt{x}}\Bigr)\,dx | ||
&= \int\limits_{4}^{9}\Bigl( x^{1/2}-\frac{1}{x^{1/2}}\Bigr)\,dx\\[5pt] | &= \int\limits_{4}^{9}\Bigl( x^{1/2}-\frac{1}{x^{1/2}}\Bigr)\,dx\\[5pt] | ||
Zeile 11: | Zeile 11: | ||
We obtain | We obtain | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\int\limits_{4}^{9} \bigl( x^{1/2}-x^{-1/2}\bigr)\,dx | \int\limits_{4}^{9} \bigl( x^{1/2}-x^{-1/2}\bigr)\,dx | ||
&= \Bigl[\ \frac{x^{1/2+1}}{1/2+1} - \frac{x^{-1/2+1}}{-1/2+1}\ \Bigr]_{4}^{9}\\[5pt] | &= \Bigl[\ \frac{x^{1/2+1}}{1/2+1} - \frac{x^{-1/2+1}}{-1/2+1}\ \Bigr]_{4}^{9}\\[5pt] |
Version vom 12:58, 10. Mär. 2009
If we recall that x=x1
2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This is a standard integral in which the integrand consists of two terms looking like 2
2
We obtain
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |