Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 2.1:2c

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
If we recall that <math>\sqrt{x} = x^{1/2}</math>, the integral can be written as
If we recall that <math>\sqrt{x} = x^{1/2}</math>, the integral can be written as
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\int\limits_{4}^{9} \bigl(\sqrt{x}-\frac{1}{\sqrt{x}}\Bigr)\,dx
\int\limits_{4}^{9} \bigl(\sqrt{x}-\frac{1}{\sqrt{x}}\Bigr)\,dx
&= \int\limits_{4}^{9}\Bigl( x^{1/2}-\frac{1}{x^{1/2}}\Bigr)\,dx\\[5pt]
&= \int\limits_{4}^{9}\Bigl( x^{1/2}-\frac{1}{x^{1/2}}\Bigr)\,dx\\[5pt]
Zeile 11: Zeile 11:
We obtain
We obtain
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\int\limits_{4}^{9} \bigl( x^{1/2}-x^{-1/2}\bigr)\,dx
\int\limits_{4}^{9} \bigl( x^{1/2}-x^{-1/2}\bigr)\,dx
&= \Bigl[\ \frac{x^{1/2+1}}{1/2+1} - \frac{x^{-1/2+1}}{-1/2+1}\ \Bigr]_{4}^{9}\\[5pt]
&= \Bigl[\ \frac{x^{1/2+1}}{1/2+1} - \frac{x^{-1/2+1}}{-1/2+1}\ \Bigr]_{4}^{9}\\[5pt]

Version vom 12:58, 10. Mär. 2009

If we recall that x=x12 , the integral can be written as

94x1xdx=94x121x12dx=94x12x12dx.

This is a standard integral in which the integrand consists of two terms looking like xn, where n=12 and n=12, respectively.

We obtain

94x12x12dx= x12+112+1x12+112+1 94= 32x1+1212x12 94= 32xx2x 94=329929324424=329323324222=186316+4=16316=316316=332.