Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 2.1:2d

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
If we rewrite <math>\sqrt{x}</math> as <math>x^{1/2}</math>, the integrand can then be simplified using the power laws,
If we rewrite <math>\sqrt{x}</math> as <math>x^{1/2}</math>, the integrand can then be simplified using the power laws,
-
{{Displayed math||<math>\int\limits_1^4 \frac{\sqrt{x}}{x^2}\,dx = \int\limits_1^4 \frac{x^{1/2}}{x^2}\,dx = \int\limits_1^4 x^{1/2-2}\,dx = \int\limits_1^4 x^{-3/2}\,dx\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>\int\limits_1^4 \frac{\sqrt{x}}{x^2}\,dx = \int\limits_1^4 \frac{x^{1/2}}{x^2}\,dx = \int\limits_1^4 x^{1/2-2}\,dx = \int\limits_1^4 x^{-3/2}\,dx\,\textrm{.}</math>}}
We can now use the fact that a primitive function for <math>x^{n}</math> is <math>x^{n+1}/(n+1)</math> and calculate the integral's value,
We can now use the fact that a primitive function for <math>x^{n}</math> is <math>x^{n+1}/(n+1)</math> and calculate the integral's value,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\int\limits_1^4 x^{-3/2}\,dx
\int\limits_1^4 x^{-3/2}\,dx
&= \Bigl[\ \frac{x^{-3/2+1}}{-3/2+1}\ \Bigr]_1^4\\[5pt]
&= \Bigl[\ \frac{x^{-3/2+1}}{-3/2+1}\ \Bigr]_1^4\\[5pt]

Version vom 12:58, 10. Mär. 2009

If we rewrite x  as x12 , the integrand can then be simplified using the power laws,

41x2xdx=41x2x12dx=41x122dx=41x32dx. 

We can now use the fact that a primitive function for xn is xn+1(n+1) and calculate the integral's value,

41x32dx= x32+132+1 41= 12x12 41= 21x12 41= 2x 41=2421=22+2=1.