Processing Math: Done
Lösung 2.1:2d
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
If we rewrite <math>\sqrt{x}</math> as <math>x^{1/2}</math>, the integrand can then be simplified using the power laws, | If we rewrite <math>\sqrt{x}</math> as <math>x^{1/2}</math>, the integrand can then be simplified using the power laws, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\int\limits_1^4 \frac{\sqrt{x}}{x^2}\,dx = \int\limits_1^4 \frac{x^{1/2}}{x^2}\,dx = \int\limits_1^4 x^{1/2-2}\,dx = \int\limits_1^4 x^{-3/2}\,dx\,\textrm{.}</math>}} |
We can now use the fact that a primitive function for <math>x^{n}</math> is <math>x^{n+1}/(n+1)</math> and calculate the integral's value, | We can now use the fact that a primitive function for <math>x^{n}</math> is <math>x^{n+1}/(n+1)</math> and calculate the integral's value, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\int\limits_1^4 x^{-3/2}\,dx | \int\limits_1^4 x^{-3/2}\,dx | ||
&= \Bigl[\ \frac{x^{-3/2+1}}{-3/2+1}\ \Bigr]_1^4\\[5pt] | &= \Bigl[\ \frac{x^{-3/2+1}}{-3/2+1}\ \Bigr]_1^4\\[5pt] |
Version vom 12:58, 10. Mär. 2009
If we rewrite x
2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
We can now use the fact that a primitive function for (n+1)
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |