Processing Math: Done
Lösung 2.1:4a
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 5: | Zeile 5: | ||
The area of the region between <math>x=0</math> and <math>x=\pi</math> can therefore be written as | The area of the region between <math>x=0</math> and <math>x=\pi</math> can therefore be written as | ||
- | {{ | + | {{Abgesetzte Formel||<math>\int\limits_{0}^{\pi} \sin x\,dx</math>}} |
whilst the area of the remaining region under the ''x''-axis is equal to | whilst the area of the remaining region under the ''x''-axis is equal to | ||
- | {{ | + | {{Abgesetzte Formel||<math>-\int\limits_{\pi}^{5\pi/4} \sin x\,dx</math>}} |
(note the minus sign in front of the integral). | (note the minus sign in front of the integral). | ||
Zeile 15: | Zeile 15: | ||
The total area becomes | The total area becomes | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
& \int\limits_{0}^{\pi} \sin x\,dx - \int\limits_{\pi}^{5\pi/4} \sin x\,dx\\[5pt] | & \int\limits_{0}^{\pi} \sin x\,dx - \int\limits_{\pi}^{5\pi/4} \sin x\,dx\\[5pt] | ||
&\qquad\quad {}= \Bigl[\ -\cos x\ \Bigr]_0^\pi - \Bigl[\ -\cos x\ \Bigr]_\pi^{5\pi/4}\\[5pt] | &\qquad\quad {}= \Bigl[\ -\cos x\ \Bigr]_0^\pi - \Bigl[\ -\cos x\ \Bigr]_\pi^{5\pi/4}\\[5pt] |
Version vom 12:59, 10. Mär. 2009
If we draw the curve
The area of the region between
![]() ![]() |
whilst the area of the remaining region under the x-axis is equal to
![]() ![]() ![]() ![]() |
(note the minus sign in front of the integral).
The total area becomes
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Note: A simple way to obtain the values of 4)
4