Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Lösung 2.2:2a

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
The integral is a standard integral, with <math>5x</math> as the argument of the cosine function. If we therefore substitute <math>u=5x</math>, we obtain the “correct” argument of the cosine,
The integral is a standard integral, with <math>5x</math> as the argument of the cosine function. If we therefore substitute <math>u=5x</math>, we obtain the “correct” argument of the cosine,
-
{{Displayed math||<math>\int\limits_0^{\pi} \cos 5x\,dx = \left\{\begin{align}
+
{{Abgesetzte Formel||<math>\int\limits_0^{\pi} \cos 5x\,dx = \left\{\begin{align}
u &= 5x\\[5pt]
u &= 5x\\[5pt]
du &= (5x)'\,dx = 5\,dx
du &= (5x)'\,dx = 5\,dx
Zeile 11: Zeile 11:
Now, we have a standard integral which we can easily compute,
Now, we have a standard integral which we can easily compute,
-
{{Displayed math||<math>\frac{1}{5}\int\limits_0^{5\pi} \cos u\,du = \frac{1}{5}\Bigl[\ \sin u\ \Bigr]_0^{5\pi} = \frac{1}{5}( \sin 5\pi -\sin 0) = \frac{1}{5}(0-0) = 0\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>\frac{1}{5}\int\limits_0^{5\pi} \cos u\,du = \frac{1}{5}\Bigl[\ \sin u\ \Bigr]_0^{5\pi} = \frac{1}{5}( \sin 5\pi -\sin 0) = \frac{1}{5}(0-0) = 0\,\textrm{.}</math>}}

Version vom 13:01, 10. Mär. 2009

The integral is a standard integral, with 5x as the argument of the cosine function. If we therefore substitute u=5x, we obtain the “correct” argument of the cosine,

0cos5xdx=udu=5x=(5x)dx=5dx=5150cosudu. 

As can be seen, the variable change replaced dx by 51du and the new limits of integration become u=50=0 and u=5=5.

Now, we have a standard integral which we can easily compute,

5150cosudu=51 sinu 05=51(sin5sin0)=51(00)=0. 


Note: If we draw the graph of y=cos5x, we see also that the area between the curve and x-axis above the x-axis is the same as the area under the x-axis.