Processing Math: Done
Lösung 2.2:2a
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
The integral is a standard integral, with <math>5x</math> as the argument of the cosine function. If we therefore substitute <math>u=5x</math>, we obtain the “correct” argument of the cosine, | The integral is a standard integral, with <math>5x</math> as the argument of the cosine function. If we therefore substitute <math>u=5x</math>, we obtain the “correct” argument of the cosine, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\int\limits_0^{\pi} \cos 5x\,dx = \left\{\begin{align} |
u &= 5x\\[5pt] | u &= 5x\\[5pt] | ||
du &= (5x)'\,dx = 5\,dx | du &= (5x)'\,dx = 5\,dx | ||
Zeile 11: | Zeile 11: | ||
Now, we have a standard integral which we can easily compute, | Now, we have a standard integral which we can easily compute, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\frac{1}{5}\int\limits_0^{5\pi} \cos u\,du = \frac{1}{5}\Bigl[\ \sin u\ \Bigr]_0^{5\pi} = \frac{1}{5}( \sin 5\pi -\sin 0) = \frac{1}{5}(0-0) = 0\,\textrm{.}</math>}} |
Version vom 13:01, 10. Mär. 2009
The integral is a standard integral, with
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
As can be seen, the variable change replaced 0=0
=5
Now, we have a standard integral which we can easily compute,
![]() ![]() ![]() ![]() ![]() ![]() |
Note: If we draw the graph of