Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Lösung 2.2:3a

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
The secret behind a successful substitution is to be able to recognize the integral as an expression of the type
The secret behind a successful substitution is to be able to recognize the integral as an expression of the type
-
{{Displayed math||<math>\int \left( \begin{matrix}
+
{{Abgesetzte Formel||<math>\int \left( \begin{matrix}
\text{an expression}\\
\text{an expression}\\
\text{in u}
\text{in u}
Zeile 8: Zeile 8:
where <math>u=u(x)</math> is the actual substitution. In the integral
where <math>u=u(x)</math> is the actual substitution. In the integral
-
{{Displayed math||<math>\int 2x\sin x^2\,dx</math>}}
+
{{Abgesetzte Formel||<math>\int 2x\sin x^2\,dx</math>}}
we see that the expression <math>x^2</math> is the argument for the sine function, as the same time as its derivative <math>\bigl(x^2\bigr)'=2x</math> stands as a factor in front of sine. Therefore, if we set <math>u=x^2</math>, the integral, the integral will be of the form
we see that the expression <math>x^2</math> is the argument for the sine function, as the same time as its derivative <math>\bigl(x^2\bigr)'=2x</math> stands as a factor in front of sine. Therefore, if we set <math>u=x^2</math>, the integral, the integral will be of the form
-
{{Displayed math||<math>\int u'\sin u\,dx\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>\int u'\sin u\,dx\,\textrm{.}</math>}}
Thus, we can use <math>u=x^2</math> for the substitution,
Thus, we can use <math>u=x^2</math> for the substitution,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\int 2x\sin x^2\,dx
\int 2x\sin x^2\,dx
&=\left\{\begin{align}
&=\left\{\begin{align}

Version vom 13:01, 10. Mär. 2009

The secret behind a successful substitution is to be able to recognize the integral as an expression of the type

an expressionin uudx 

where u=u(x) is the actual substitution. In the integral

2xsinx2dx 

we see that the expression x2 is the argument for the sine function, as the same time as its derivative x2=2x  stands as a factor in front of sine. Therefore, if we set u=x2, the integral, the integral will be of the form

usinudx. 

Thus, we can use u=x2 for the substitution,

2xsinx2dx=udu=x2=2xdx=sinudu=cosu+C=cosx2+C.