Processing Math: Done
Lösung 2.2:3f
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
Let's rewrite the integral somewhat, | Let's rewrite the integral somewhat, | ||
- | {{ | + | {{Abgesetzte Formel||<math>2\sin\sqrt{x}\cdot\frac{1}{2\sqrt{x}}\,\textrm{.}</math>}} |
Here, we see that the factor on the right, <math>1/2\sqrt{x}</math>, is the derivative of the expression <math>\sqrt{x}</math>, which appears in the factor on the left, <math>2\sin \sqrt{x}\,</math>. With the substitution <math>u=\sqrt{x}</math>, the integrand can therefore be written as | Here, we see that the factor on the right, <math>1/2\sqrt{x}</math>, is the derivative of the expression <math>\sqrt{x}</math>, which appears in the factor on the left, <math>2\sin \sqrt{x}\,</math>. With the substitution <math>u=\sqrt{x}</math>, the integrand can therefore be written as | ||
- | {{ | + | {{Abgesetzte Formel||<math>2\sin u\cdot u'</math>}} |
and the integral becomes | and the integral becomes | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\int \frac{\sin \sqrt{x}}{\sqrt{x}}\,dx | \int \frac{\sin \sqrt{x}}{\sqrt{x}}\,dx | ||
&= \left\{ \begin{align} | &= \left\{ \begin{align} |
Version vom 13:02, 10. Mär. 2009
Let's rewrite the integral somewhat,
![]() ![]() ![]() |
Here, we see that the factor on the right, 2
x
x
x
x
![]() ![]() |
and the integral becomes
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |