Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Lösung 2.2:4c

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
The trick is to complete the square in the denominator so that we obtain the same expression as in exercise b,
The trick is to complete the square in the denominator so that we obtain the same expression as in exercise b,
-
{{Displayed math||<math>\int \frac{dx}{x^2+4x+8} = \int \frac{dx}{(x+2)^2-2^2+8} = \int \frac{dx}{(x+2)^2+4}\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>\int \frac{dx}{x^2+4x+8} = \int \frac{dx}{(x+2)^2-2^2+8} = \int \frac{dx}{(x+2)^2+4}\,\textrm{.}</math>}}
We take out a factor 4 from the denominator
We take out a factor 4 from the denominator
-
{{Displayed math||<math>\int \frac{dx}{(x+2)^2+4} = \int \frac{dx}{4\bigl(\tfrac{1}{4}(x+2)^2+1\bigr)} = \frac{1}{4}\int \frac{dx}{\tfrac{1}{4}(x+2)^2+1}</math>}}
+
{{Abgesetzte Formel||<math>\int \frac{dx}{(x+2)^2+4} = \int \frac{dx}{4\bigl(\tfrac{1}{4}(x+2)^2+1\bigr)} = \frac{1}{4}\int \frac{dx}{\tfrac{1}{4}(x+2)^2+1}</math>}}
and rewrite the quadratic term as
and rewrite the quadratic term as
-
{{Displayed math||<math>\frac{1}{4}\int \frac{dx}{\tfrac{1}{4}(x+2)^2+1} = \frac{1}{4}\int \frac{dx}{\Bigl(\dfrac{x+2}{2}\Bigr)^2+1}\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>\frac{1}{4}\int \frac{dx}{\tfrac{1}{4}(x+2)^2+1} = \frac{1}{4}\int \frac{dx}{\Bigl(\dfrac{x+2}{2}\Bigr)^2+1}\,\textrm{.}</math>}}
If we now substitute <math>u = (x+2)/2</math>, we obtain the integral in the exercise
If we now substitute <math>u = (x+2)/2</math>, we obtain the integral in the exercise
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\frac{1}{4}\int \frac{dx}{\Bigl(\dfrac{x+2}{2}\Bigr)^2+1}
\frac{1}{4}\int \frac{dx}{\Bigl(\dfrac{x+2}{2}\Bigr)^2+1}
&= \left\{\begin{align}
&= \left\{\begin{align}

Version vom 13:03, 10. Mär. 2009

The trick is to complete the square in the denominator so that we obtain the same expression as in exercise b,

dxx2+4x+8=dx(x+2)222+8=dx(x+2)2+4. 

We take out a factor 4 from the denominator

dx(x+2)2+4=dx441(x+2)2+1=41dx41(x+2)2+1 

and rewrite the quadratic term as

41dx41(x+2)2+1=41dx2x+22+1. 

If we now substitute u=(x+2)2, we obtain the integral in the exercise

41dx2x+22+1=udu=(x+2)2=dx2=412duu2+1=21duu2+1=21arctanu+C=21arctan2x+2+C.