Processing Math: Done
Lösung 2.2:4c
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
The trick is to complete the square in the denominator so that we obtain the same expression as in exercise b, | The trick is to complete the square in the denominator so that we obtain the same expression as in exercise b, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\int \frac{dx}{x^2+4x+8} = \int \frac{dx}{(x+2)^2-2^2+8} = \int \frac{dx}{(x+2)^2+4}\,\textrm{.}</math>}} |
We take out a factor 4 from the denominator | We take out a factor 4 from the denominator | ||
- | {{ | + | {{Abgesetzte Formel||<math>\int \frac{dx}{(x+2)^2+4} = \int \frac{dx}{4\bigl(\tfrac{1}{4}(x+2)^2+1\bigr)} = \frac{1}{4}\int \frac{dx}{\tfrac{1}{4}(x+2)^2+1}</math>}} |
and rewrite the quadratic term as | and rewrite the quadratic term as | ||
- | {{ | + | {{Abgesetzte Formel||<math>\frac{1}{4}\int \frac{dx}{\tfrac{1}{4}(x+2)^2+1} = \frac{1}{4}\int \frac{dx}{\Bigl(\dfrac{x+2}{2}\Bigr)^2+1}\,\textrm{.}</math>}} |
If we now substitute <math>u = (x+2)/2</math>, we obtain the integral in the exercise | If we now substitute <math>u = (x+2)/2</math>, we obtain the integral in the exercise | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\frac{1}{4}\int \frac{dx}{\Bigl(\dfrac{x+2}{2}\Bigr)^2+1} | \frac{1}{4}\int \frac{dx}{\Bigl(\dfrac{x+2}{2}\Bigr)^2+1} | ||
&= \left\{\begin{align} | &= \left\{\begin{align} |
Version vom 13:03, 10. Mär. 2009
The trick is to complete the square in the denominator so that we obtain the same expression as in exercise b,
![]() ![]() ![]() |
We take out a factor 4 from the denominator
![]() ![]() ![]() ![]() ![]() |
and rewrite the quadratic term as
![]() ![]() ![]() ![]() |
If we now substitute 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |