Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Lösung 2.3:1b

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
If we look at the formula for integration by parts,
If we look at the formula for integration by parts,
-
{{Displayed math||<math>\int f(x)g(x)\,dx = F(x)g(x) - \int F(x)g'(x)\,dx\,,</math>}}
+
{{Abgesetzte Formel||<math>\int f(x)g(x)\,dx = F(x)g(x) - \int F(x)g'(x)\,dx\,,</math>}}
we see that if we choose <math>f(x)=\sin x</math> and <math>g(x)=x+1</math>, then the factor <math>g(x)</math> will be differentiated to a constant on the right-hand side of the integral. Naturally, this presupposes that we can find a primitive function for <math>f(x)</math> (which we can) and that we can then integrate it. Let's try!
we see that if we choose <math>f(x)=\sin x</math> and <math>g(x)=x+1</math>, then the factor <math>g(x)</math> will be differentiated to a constant on the right-hand side of the integral. Naturally, this presupposes that we can find a primitive function for <math>f(x)</math> (which we can) and that we can then integrate it. Let's try!
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\int (x+1)\sin x\,dx
\int (x+1)\sin x\,dx
&= (x+1)\cdot (-\cos x) - \int 1\cdot (-\cos x)\,dx\\[5pt]
&= (x+1)\cdot (-\cos x) - \int 1\cdot (-\cos x)\,dx\\[5pt]

Version vom 13:03, 10. Mär. 2009

If we look at the formula for integration by parts,

f(x)g(x)dx=F(x)g(x)F(x)g(x)dx 

we see that if we choose f(x)=sinx and g(x)=x+1, then the factor g(x) will be differentiated to a constant on the right-hand side of the integral. Naturally, this presupposes that we can find a primitive function for f(x) (which we can) and that we can then integrate it. Let's try!

(x+1)sinxdx=(x+1)(cosx)1(cosx)dx=(x+1)cosx+cosxdx=(x+1)cosx+sinx+C.