Processing Math: Done
Lösung 3.2:6f
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 17: | Zeile 17: | ||
The whole expression becomes | The whole expression becomes | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\frac{(2+2i)(1+i\sqrt{3}\,)}{3i(\sqrt{12}-2i)} | \frac{(2+2i)(1+i\sqrt{3}\,)}{3i(\sqrt{12}-2i)} | ||
&= \frac{2\sqrt{2}\Bigl(\cos\dfrac{\pi}{4}+i\sin\dfrac{\pi}{4}\Bigr)\cdot 2\Bigl( \cos\dfrac{\pi}{3}+i\sin\dfrac{\pi}{3}\Bigr)}{3\Bigl(\cos\dfrac{\pi}{2}+i\sin \dfrac{\pi}{2}\Bigr)\cdot 4\Bigl(\cos\Bigl(-\dfrac{\pi}{6}\Bigr)+i\sin\Bigl(-\dfrac{\pi}{6}\Bigr)\Bigr)}\\[5pt] | &= \frac{2\sqrt{2}\Bigl(\cos\dfrac{\pi}{4}+i\sin\dfrac{\pi}{4}\Bigr)\cdot 2\Bigl( \cos\dfrac{\pi}{3}+i\sin\dfrac{\pi}{3}\Bigr)}{3\Bigl(\cos\dfrac{\pi}{2}+i\sin \dfrac{\pi}{2}\Bigr)\cdot 4\Bigl(\cos\Bigl(-\dfrac{\pi}{6}\Bigr)+i\sin\Bigl(-\dfrac{\pi}{6}\Bigr)\Bigr)}\\[5pt] |
Version vom 13:10, 10. Mär. 2009
We can write every factor in the numerator and denominator in polar form and then use the arithmetical rules for multiplication and division in polar form:
r1(cos +isin
)
r2(cos
+isin
)=r1r2
cos(
+
)+isin(
+
)
r2(cos +isin
)r1(cos
+isin
)=r2r1
cos(
−
)+isin(
−
)
.
In fact, most of the work consists of writing all the factors in polar form:
![]() | ![]() |
![]() | ![]() |
The whole expression becomes
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |