Processing Math: Done
Lösung 3.3:1e
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 7: | Zeile 7: | ||
This shows that | This shows that | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
1+i\sqrt{3} &= 2\Bigl(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\Bigr)\,,\\[5pt] | 1+i\sqrt{3} &= 2\Bigl(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\Bigr)\,,\\[5pt] | ||
1-i &= \sqrt{2}\Bigl(\cos\Bigl(-\frac{\pi}{4}\Bigr) + i\sin\Bigl(-\frac{\pi}{4}\Bigr)\Bigr)\,,\\[5pt] | 1-i &= \sqrt{2}\Bigl(\cos\Bigl(-\frac{\pi}{4}\Bigr) + i\sin\Bigl(-\frac{\pi}{4}\Bigr)\Bigr)\,,\\[5pt] | ||
Zeile 15: | Zeile 15: | ||
Now, with the help of de Moivre's formula, | Now, with the help of de Moivre's formula, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\frac{\bigl(1+i\sqrt{3}\,\bigr)(1-i)^8}{\bigl(\sqrt{3}-i\bigr)^9} | \frac{\bigl(1+i\sqrt{3}\,\bigr)(1-i)^8}{\bigl(\sqrt{3}-i\bigr)^9} | ||
&= \frac{2\Bigl(\cos\dfrac{\pi}{3} + i\sin\dfrac{\pi}{3}\Bigr)\Bigl(\sqrt{2}\Bigl(\cos\Bigl(-\dfrac{\pi}{4}\Bigr) + i\sin\Bigl(-\dfrac{\pi}{4}\Bigr)\Bigr)\Bigr)^8}{\Bigl( 2\Bigl(\cos\Bigl(-\dfrac{\pi}{6}\Bigr) + i\sin\Bigl(-\dfrac{\pi}{6}\Bigr)\Bigr)\Bigr)^9}\\[5pt] | &= \frac{2\Bigl(\cos\dfrac{\pi}{3} + i\sin\dfrac{\pi}{3}\Bigr)\Bigl(\sqrt{2}\Bigl(\cos\Bigl(-\dfrac{\pi}{4}\Bigr) + i\sin\Bigl(-\dfrac{\pi}{4}\Bigr)\Bigr)\Bigr)^8}{\Bigl( 2\Bigl(\cos\Bigl(-\dfrac{\pi}{6}\Bigr) + i\sin\Bigl(-\dfrac{\pi}{6}\Bigr)\Bigr)\Bigr)^9}\\[5pt] |
Version vom 13:11, 10. Mär. 2009
Some parts of the quotient have rather high exponents and this indicates that we ought to use polar form for the calculation.
First, we write 3
3−i


This shows that
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Now, with the help of de Moivre's formula,
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |