Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Lösung 3.3:1e

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 7: Zeile 7:
This shows that
This shows that
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
1+i\sqrt{3} &= 2\Bigl(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\Bigr)\,,\\[5pt]
1+i\sqrt{3} &= 2\Bigl(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\Bigr)\,,\\[5pt]
1-i &= \sqrt{2}\Bigl(\cos\Bigl(-\frac{\pi}{4}\Bigr) + i\sin\Bigl(-\frac{\pi}{4}\Bigr)\Bigr)\,,\\[5pt]
1-i &= \sqrt{2}\Bigl(\cos\Bigl(-\frac{\pi}{4}\Bigr) + i\sin\Bigl(-\frac{\pi}{4}\Bigr)\Bigr)\,,\\[5pt]
Zeile 15: Zeile 15:
Now, with the help of de Moivre's formula,
Now, with the help of de Moivre's formula,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\frac{\bigl(1+i\sqrt{3}\,\bigr)(1-i)^8}{\bigl(\sqrt{3}-i\bigr)^9}
\frac{\bigl(1+i\sqrt{3}\,\bigr)(1-i)^8}{\bigl(\sqrt{3}-i\bigr)^9}
&= \frac{2\Bigl(\cos\dfrac{\pi}{3} + i\sin\dfrac{\pi}{3}\Bigr)\Bigl(\sqrt{2}\Bigl(\cos\Bigl(-\dfrac{\pi}{4}\Bigr) + i\sin\Bigl(-\dfrac{\pi}{4}\Bigr)\Bigr)\Bigr)^8}{\Bigl( 2\Bigl(\cos\Bigl(-\dfrac{\pi}{6}\Bigr) + i\sin\Bigl(-\dfrac{\pi}{6}\Bigr)\Bigr)\Bigr)^9}\\[5pt]
&= \frac{2\Bigl(\cos\dfrac{\pi}{3} + i\sin\dfrac{\pi}{3}\Bigr)\Bigl(\sqrt{2}\Bigl(\cos\Bigl(-\dfrac{\pi}{4}\Bigr) + i\sin\Bigl(-\dfrac{\pi}{4}\Bigr)\Bigr)\Bigr)^8}{\Bigl( 2\Bigl(\cos\Bigl(-\dfrac{\pi}{6}\Bigr) + i\sin\Bigl(-\dfrac{\pi}{6}\Bigr)\Bigr)\Bigr)^9}\\[5pt]

Version vom 13:11, 10. Mär. 2009

Some parts of the quotient have rather high exponents and this indicates that we ought to use polar form for the calculation.

First, we write 1+i3 , 1i and 3i  in polar form.

Image:3_3_1_e.gif Image:3_3_1_e_text.gif

This shows that

1+i31i3i=2cos3+isin3=2cos4+isin4=2cos6+isin6.

Now, with the help of de Moivre's formula,

3i91+i3(1i)8=2cos6+isin692cos3+isin32cos4+isin48=29cos96+isin962cos3+isin328cos84+isin84=29cos23+isin232cos3+isin32(12)8cos(2)+isin(2)=29cos23+isin232cos3+isin324(1+i0)=29224cos323+isin323=2925cos3+23+isin3+23=124cos611+isin611=116cos612+isin612=116cos26+isin26=116cos6+isin6=11623i2=1323i.