Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Lösung 3.3:2e

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
If we treat the expression <math>w=\frac{z+i}{z-i}</math> as an unknown, we have the equation
If we treat the expression <math>w=\frac{z+i}{z-i}</math> as an unknown, we have the equation
-
{{Displayed math||<math>w^2=-1\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>w^2=-1\,\textrm{.}</math>}}
We know already that this equation has roots
We know already that this equation has roots
-
{{Displayed math||<math>w=\left\{\begin{align}
+
{{Abgesetzte Formel||<math>w=\left\{\begin{align}
-i\,,&\\[5pt]
-i\,,&\\[5pt]
i\,,&
i\,,&
Zeile 12: Zeile 12:
so <math>z</math> should satisfy one of the equation's
so <math>z</math> should satisfy one of the equation's
-
{{Displayed math||<math>\frac{z+i}{z-i}=-i\quad</math> or <math>\quad\frac{z+i}{z-i}=i\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>\frac{z+i}{z-i}=-i\quad</math> or <math>\quad\frac{z+i}{z-i}=i\,\textrm{.}</math>}}
We solve these equations one by one.
We solve these equations one by one.
Zeile 21: Zeile 21:
:Multiply both sides by <math>z-i</math>,
:Multiply both sides by <math>z-i</math>,
-
{{Displayed math||<math>z+i=-i(z-i)\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>z+i=-i(z-i)\,\textrm{.}</math>}}
:Move all the <math>z</math>-terms over to the left-hand side and all the constants to the right-hand side,
:Move all the <math>z</math>-terms over to the left-hand side and all the constants to the right-hand side,
-
{{Displayed math||<math>z+iz=-1-i\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>z+iz=-1-i\,\textrm{.}</math>}}
:This gives
:This gives
-
{{Displayed math||<math>z = \frac{-1-i}{1+i} = \frac{-(1+i)}{1+i} = -1\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>z = \frac{-1-i}{1+i} = \frac{-(1+i)}{1+i} = -1\,\textrm{.}</math>}}
Zeile 36: Zeile 36:
:Multiply both sides by <math>z-i</math>,
:Multiply both sides by <math>z-i</math>,
-
{{Displayed math||<math>z+i=i(z-i)\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>z+i=i(z-i)\,\textrm{.}</math>}}
:Move all the <math>z</math>-terms over to the left-hand side and all the constants to the right-hand side,
:Move all the <math>z</math>-terms over to the left-hand side and all the constants to the right-hand side,
-
{{Displayed math||<math>z-iz=1-i\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>z-iz=1-i\,\textrm{.}</math>}}
:This gives
:This gives
-
{{Displayed math||<math>z = \frac{1-i}{1-i} = 1\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>z = \frac{1-i}{1-i} = 1\,\textrm{.}</math>}}
The solutions are therefore <math>z=-1</math> and <math>z=1\,</math>.
The solutions are therefore <math>z=-1</math> and <math>z=1\,</math>.

Version vom 13:12, 10. Mär. 2009

If we treat the expression w=ziz+i as an unknown, we have the equation

w2=1.

We know already that this equation has roots

w=ii 

so z should satisfy one of the equation's

ziz+i=i or ziz+i=i.

We solve these equations one by one.


  • (z+i)(zi)=i:
Multiply both sides by zi,
z+i=i(zi).
Move all the z-terms over to the left-hand side and all the constants to the right-hand side,
z+iz=1i.
This gives
z=1+i1i=1+i(1+i)=1.


  • (z+i)(zi)=i:
Multiply both sides by zi,
z+i=i(zi).
Move all the z-terms over to the left-hand side and all the constants to the right-hand side,
ziz=1i.
This gives
z=1i1i=1.


The solutions are therefore z=1 and z=1.