Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Lösung 3.3:3c

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
If we take the minus sign out in front of the whole expression,
If we take the minus sign out in front of the whole expression,
-
{{Displayed math||<math>-\bigl(z^2+2iz-4z-1\bigr)\,,</math>}}
+
{{Abgesetzte Formel||<math>-\bigl(z^2+2iz-4z-1\bigr)\,,</math>}}
and collect together the first-degree terms,
and collect together the first-degree terms,
-
{{Displayed math||<math>-\bigl(z^2+(-4+2i)z-1\bigr)\,,</math>}}
+
{{Abgesetzte Formel||<math>-\bigl(z^2+(-4+2i)z-1\bigr)\,,</math>}}
we can then complete the square of the expression inside the outer bracket,
we can then complete the square of the expression inside the outer bracket,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
-\bigl(z^2+(-4+2i)z-1\bigr)
-\bigl(z^2+(-4+2i)z-1\bigr)
&= -\Bigl(\Bigl(z+\frac{-4+2i}{2}\Bigr)^2-\Bigl(\frac{-4+2i}{2}\Bigr)^2-1\Bigr)\\[5pt]
&= -\Bigl(\Bigl(z+\frac{-4+2i}{2}\Bigr)^2-\Bigl(\frac{-4+2i}{2}\Bigr)^2-1\Bigr)\\[5pt]

Version vom 13:12, 10. Mär. 2009

If we take the minus sign out in front of the whole expression,

z2+2iz4z1 

and collect together the first-degree terms,

z2+(4+2i)z1 

we can then complete the square of the expression inside the outer bracket,

z2+(4+2i)z1=z+24+2i224+2i21=(z2+i)2(2+i)21=(z2+i)2(2)2+4ii21=(z2+i)24+4i+11=(z2+i)24+4i=(z2+i)2+44i.