Processing Math: Done
Lösung 3.3:4a
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 3: | Zeile 3: | ||
We write | We write | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
z &= r(\cos\alpha + i\sin\alpha)\,,\\[5pt] | z &= r(\cos\alpha + i\sin\alpha)\,,\\[5pt] | ||
i &= 1\,\Bigl(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\Bigr)\,, | i &= 1\,\Bigl(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\Bigr)\,, | ||
Zeile 10: | Zeile 10: | ||
and, on using de Moivre's formula, the equation becomes | and, on using de Moivre's formula, the equation becomes | ||
- | {{ | + | {{Abgesetzte Formel||<math>r^2(\cos 2\alpha + i\sin 2\alpha) = 1\Bigl(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\Bigr)\,\textrm{.}</math>}} |
Both sides are equal when | Both sides are equal when | ||
- | {{ | + | {{Abgesetzte Formel||<math>\left\{\begin{align} |
r^2 &= 1\,,\\[5pt] | r^2 &= 1\,,\\[5pt] | ||
2\alpha &= \frac{\pi}{2}+2n\pi\,,\quad\text{(n is an arbitrary integer),} | 2\alpha &= \frac{\pi}{2}+2n\pi\,,\quad\text{(n is an arbitrary integer),} | ||
Zeile 21: | Zeile 21: | ||
which gives that | which gives that | ||
- | {{ | + | {{Abgesetzte Formel||<math>\left\{\begin{align} |
r &= 1\,,\\[5pt] | r &= 1\,,\\[5pt] | ||
\alpha &= \frac{\pi}{4} + n\pi\,,\quad\text{(n is an arbitrary integer).} | \alpha &= \frac{\pi}{4} + n\pi\,,\quad\text{(n is an arbitrary integer).} | ||
Zeile 31: | Zeile 31: | ||
The solutions to the equation are | The solutions to the equation are | ||
- | {{ | + | {{Abgesetzte Formel||<math>z=\left\{\begin{align} |
&1\cdot\Bigl(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\Bigr)\\[5pt] | &1\cdot\Bigl(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\Bigr)\\[5pt] | ||
&1\cdot\Bigl(\cos\frac{3\pi}{4}+i\sin\frac{3\pi}{4}\Bigr) | &1\cdot\Bigl(\cos\frac{3\pi}{4}+i\sin\frac{3\pi}{4}\Bigr) |
Version vom 13:13, 10. Mär. 2009
This is a typical binomial equation which we solve in polar form.
We write
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
and, on using de Moivre's formula, the equation becomes
![]() ![]() ![]() ![]() ![]() ![]() |
Both sides are equal when
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
which gives that
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
When
The solutions to the equation are
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |