Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Lösung 3.3:5a

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 3: Zeile 3:
We complete the square on the left-hand side,
We complete the square on the left-hand side,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
(z-(1+i))^2-(1+i)^2+2i-1 &= 0\,,\\[5pt]
(z-(1+i))^2-(1+i)^2+2i-1 &= 0\,,\\[5pt]
(z-(1+i))^2-(1+2i+i^2)+2i-1&=0\,,\\[5pt]
(z-(1+i))^2-(1+2i+i^2)+2i-1&=0\,,\\[5pt]
Zeile 12: Zeile 12:
Now, we see that the equation has the solutions
Now, we see that the equation has the solutions
-
{{Displayed math||<math>z-(1+i) = \pm 1\quad \Leftrightarrow \quad z=\left\{ \begin{align}
+
{{Abgesetzte Formel||<math>z-(1+i) = \pm 1\quad \Leftrightarrow \quad z=\left\{ \begin{align}
&2+i\,,\\
&2+i\,,\\
&i\,\textrm{.}
&i\,\textrm{.}

Version vom 13:13, 10. Mär. 2009

Even if the equation contains complex numbers as coefficients, we treat is as an ordinary second-degree equation and solve it by completing the square taking the square root.

We complete the square on the left-hand side,

(z(1+i))2(1+i)2+2i1(z(1+i))2(1+2i+i2)+2i1(z(1+i))212i+1+2i1(z(1+i))21=0=0=0=0.

Now, we see that the equation has the solutions

z(1+i)=1z=2+ii. 

We test the solutions,

z=2+i:z22(1+i)z+2i1z=i:z22(1+i)z+2i1=(2+i)22(1+i)(2+i)+2i1=4+4i+i22(2+i+2i+i2)+2i1=4+4i146i+2+2i1=0=i22(1+i)i+2i1=12(i+i2)+2i1=12i+2+2i1=0.