Processing Math: Done
Lösung 3.3:5a
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 3: | Zeile 3: | ||
We complete the square on the left-hand side, | We complete the square on the left-hand side, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
(z-(1+i))^2-(1+i)^2+2i-1 &= 0\,,\\[5pt] | (z-(1+i))^2-(1+i)^2+2i-1 &= 0\,,\\[5pt] | ||
(z-(1+i))^2-(1+2i+i^2)+2i-1&=0\,,\\[5pt] | (z-(1+i))^2-(1+2i+i^2)+2i-1&=0\,,\\[5pt] | ||
Zeile 12: | Zeile 12: | ||
Now, we see that the equation has the solutions | Now, we see that the equation has the solutions | ||
- | {{ | + | {{Abgesetzte Formel||<math>z-(1+i) = \pm 1\quad \Leftrightarrow \quad z=\left\{ \begin{align} |
&2+i\,,\\ | &2+i\,,\\ | ||
&i\,\textrm{.} | &i\,\textrm{.} |
Version vom 13:13, 10. Mär. 2009
Even if the equation contains complex numbers as coefficients, we treat is as an ordinary second-degree equation and solve it by completing the square taking the square root.
We complete the square on the left-hand side,
![]() ![]() ![]() |
Now, we see that the equation has the solutions
![]() ![]() ![]() ![]() |
We test the solutions,
=i2−2(1+i)i+2i−1=−1−2(i+i2)+2i−1=−1−2i+2+2i−1=0.