Lösung 3.3:5d
Aus Online Mathematik Brückenkurs 2
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
Let us first divide both sides by <math>4+i</math>, so that the coefficient in front of <math>z^2</math> becomes <math>1</math>, | Let us first divide both sides by <math>4+i</math>, so that the coefficient in front of <math>z^2</math> becomes <math>1</math>, | ||
- | {{ | + | {{Abgesetzte Formel||<math>z^2 + \frac{1-21i}{4+i}z = \frac{17}{4+i}\,\textrm{.}</math>}} |
The two complex quotients become | The two complex quotients become | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\frac{1-21i}{4+i} | \frac{1-21i}{4+i} | ||
&= \frac{(1-21i)(4-i)}{(4+i)(4-i)} | &= \frac{(1-21i)(4-i)}{(4+i)(4-i)} | ||
Zeile 21: | Zeile 21: | ||
Thus, the equation becomes | Thus, the equation becomes | ||
- | {{ | + | {{Abgesetzte Formel||<math>z^2 - (1+5i)z = 4-i\,\textrm{.}</math>}} |
Now, we complete the square of the left-hand side, | Now, we complete the square of the left-hand side, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\Bigl(z-\frac{1+5i}{2}\Bigr)^2 - \Bigl(\frac{1+5i}{2}\Bigr)^2 &= 4-i\,,\\[5pt] | \Bigl(z-\frac{1+5i}{2}\Bigr)^2 - \Bigl(\frac{1+5i}{2}\Bigr)^2 &= 4-i\,,\\[5pt] | ||
\Bigl(z-\frac{1+5i}{2}\Bigr)^2 - \Bigl(\frac{1}{4}+\frac{5}{2}\,i+\frac{25}{4}i^2 \Bigr) &= 4-i\,,\\[5pt] | \Bigl(z-\frac{1+5i}{2}\Bigr)^2 - \Bigl(\frac{1}{4}+\frac{5}{2}\,i+\frac{25}{4}i^2 \Bigr) &= 4-i\,,\\[5pt] | ||
Zeile 34: | Zeile 34: | ||
If we set <math>w=z-\frac{1+5i}{2}</math>, we have a binomial equation in <math>w</math>, | If we set <math>w=z-\frac{1+5i}{2}</math>, we have a binomial equation in <math>w</math>, | ||
- | {{ | + | {{Abgesetzte Formel||<math>w^2 = -2+\frac{3}{2}\,i</math>}} |
which we solve by putting <math>w=x+iy</math>, | which we solve by putting <math>w=x+iy</math>, | ||
- | {{ | + | {{Abgesetzte Formel||<math>(x+iy)^2 = -2+\frac{3}{2}\,i</math>}} |
or, if the left-hand side is expanded, | or, if the left-hand side is expanded, | ||
- | {{ | + | {{Abgesetzte Formel||<math>x^2-y^2+2xyi = -2+\frac{3}{2}\,i\,\textrm{.}</math>}} |
If we identify the real and imaginary parts on both sides, we get | If we identify the real and imaginary parts on both sides, we get | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
x^2-y^2 &= -2\,,\\[5pt] | x^2-y^2 &= -2\,,\\[5pt] | ||
2xy &= \frac{3}{2}\,, | 2xy &= \frac{3}{2}\,, | ||
Zeile 53: | Zeile 53: | ||
and if we take the magnitude of both sides and put them equal to each other, we obtain a third relation: | and if we take the magnitude of both sides and put them equal to each other, we obtain a third relation: | ||
- | {{ | + | {{Abgesetzte Formel||<math>x^2 + y^2 = \sqrt{(-2)^2+\bigl(\tfrac{3}{2}\bigr)^2} = \tfrac{5}{2}\,\textrm{.}</math>}} |
Strictly speaking, this last relation is contained within the first two and we include it because makes the calculations easier. | Strictly speaking, this last relation is contained within the first two and we include it because makes the calculations easier. | ||
Zeile 59: | Zeile 59: | ||
Together, the three relations constitute the following system of equations: | Together, the three relations constitute the following system of equations: | ||
- | {{ | + | {{Abgesetzte Formel||<math>\left\{\begin{align} |
x^2-y^2 &= -2\,,\\[5pt] | x^2-y^2 &= -2\,,\\[5pt] | ||
2xy &= \frac{3}{2}\,,\\[5pt] | 2xy &= \frac{3}{2}\,,\\[5pt] | ||
Zeile 125: | Zeile 125: | ||
This gives four possible combinations, | This gives four possible combinations, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\left\{\begin{align} |
x &= \tfrac{1}{2}\\[5pt] | x &= \tfrac{1}{2}\\[5pt] | ||
y &= \tfrac{3}{2} | y &= \tfrac{3}{2} | ||
Zeile 147: | Zeile 147: | ||
of which only two also satisfy the second equation. | of which only two also satisfy the second equation. | ||
- | {{ | + | {{Abgesetzte Formel||<math>\left\{\begin{align} |
x &= \tfrac{1}{2}\\[5pt] | x &= \tfrac{1}{2}\\[5pt] | ||
y &= \tfrac{3}{2} | y &= \tfrac{3}{2} | ||
Zeile 159: | Zeile 159: | ||
This means that the binomial equation has the two solutions, | This means that the binomial equation has the two solutions, | ||
- | {{ | + | {{Abgesetzte Formel||<math>w=\frac{1}{2}+\frac{3}{2}\,i\qquad</math> and <math>\qquad w=-\frac{1}{2}-\frac{3}{2}\,i\,,</math>}} |
and that the original equation has the solutions | and that the original equation has the solutions | ||
- | {{ | + | {{Abgesetzte Formel||<math>z=1+4i\qquad</math> and <math>\qquad z=i</math>}} |
according to the relation <math>w=z-\frac{1+5i}{2}</math>. | according to the relation <math>w=z-\frac{1+5i}{2}</math>. |
Version vom 13:14, 10. Mär. 2009
Let us first divide both sides by
The two complex quotients become
![]() |
Thus, the equation becomes
Now, we complete the square of the left-hand side,
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
If we set
which we solve by putting
or, if the left-hand side is expanded,
If we identify the real and imaginary parts on both sides, we get
![]() ![]() |
and if we take the magnitude of both sides and put them equal to each other, we obtain a third relation:
![]() ![]() ![]() |
Strictly speaking, this last relation is contained within the first two and we include it because makes the calculations easier.
Together, the three relations constitute the following system of equations:
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
From the first and the third equations, we can relatively easily obtain the values that
Add the first and third equations,
which gives that \displaystyle x=\pm \tfrac{1}{2}.
Then, subtract the first equation from the third equation,
\displaystyle x^2 | \displaystyle {}+{} | \displaystyle y^2 | \displaystyle {}={} | \displaystyle \tfrac{5}{2} | |
\displaystyle -\ \ | \displaystyle \bigl(x^2 | \displaystyle {}-{} | \displaystyle y^2 | \displaystyle {}={} | \displaystyle -2\rlap{\bigr)} |
\displaystyle 2y^2 | \displaystyle {}={} | \displaystyle \tfrac{9}{2} |
i.e. \displaystyle y=\pm\tfrac{3}{2}.
This gives four possible combinations,
\displaystyle \left\{\begin{align}
x &= \tfrac{1}{2}\\[5pt] y &= \tfrac{3}{2} \end{align}\right. \qquad \left\{\begin{align} x &= \tfrac{1}{2}\\[5pt] y &= -\tfrac{3}{2} \end{align}\right. \qquad \left\{\begin{align} x &= -\tfrac{1}{2}\\[5pt] y &= \tfrac{3}{2} \end{align}\right. \qquad \left\{\begin{align} x &= -\tfrac{1}{2}\\[5pt] y &= -\tfrac{3}{2} \end{align} \right. |
of which only two also satisfy the second equation.
\displaystyle \left\{\begin{align}
x &= \tfrac{1}{2}\\[5pt] y &= \tfrac{3}{2} \end{align}\right. \qquad\text{and}\qquad \left\{\begin{align} x &= -\tfrac{1}{2}\\[5pt] y &= -\tfrac{3}{2} \end{align}\right. |
This means that the binomial equation has the two solutions,
\displaystyle w=\frac{1}{2}+\frac{3}{2}\,i\qquad and \displaystyle \qquad w=-\frac{1}{2}-\frac{3}{2}\,i\,, |
and that the original equation has the solutions
\displaystyle z=1+4i\qquad and \displaystyle \qquad z=i |
according to the relation \displaystyle w=z-\frac{1+5i}{2}.
Finally, we check that the solutions really do satisfy the equation.
\displaystyle \begin{align} z=1+4i:\quad (4+i)z^2+(1-21i)z &= (4+i)(1+4i)^2+(1-21i)(1+4i)\\[5pt] &= (4+i)(1+8i+16i^2)+(1+4i-21i-84i^2)\\[5pt] &= (4+i)(-15+8i)+1-17i+84\\[5pt] &= -60+32i-15i+8i^2+1-17i+84\\[5pt] &= -60+32i-15i-8+1-17i+84\\[5pt] &= 17\,,\\[10pt] z={}\rlap{i:}\phantom{1+4i:}{}\quad (4+i)z^2+(1-21i)z &= (4+i)i^2 + (1-21i)i\\[5pt] &= (4+i)(-1)+i-21i^2\\[5pt] &= -4-i+i+21\\[5pt] &= 17\,\textrm{.} \end{align}