Processing Math: Done
Lösung 3.4:1c
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
If we focus on the leading term <math>x^3</math>, we need to complement it with <math>ax^2</math> in order to get a sub expression that is divisible by the denominator, | If we focus on the leading term <math>x^3</math>, we need to complement it with <math>ax^2</math> in order to get a sub expression that is divisible by the denominator, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\frac{x^3+a^3}{x+a} = \frac{x^3+ax^2-ax^2+a^3}{x+a}\,\textrm{.}</math>}} |
With this form on the right-hand side, we can separate away the first two terms in the numerator and have left a polynomial quotient with <math>-ax^2+a^3</math> in the numerator, | With this form on the right-hand side, we can separate away the first two terms in the numerator and have left a polynomial quotient with <math>-ax^2+a^3</math> in the numerator, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\frac{x^3+ax^2-ax^2+a^3}{x+a} | \frac{x^3+ax^2-ax^2+a^3}{x+a} | ||
&= \frac{x^3+ax^2}{x+a} + \frac{-ax^2+a^3}{x+a}\\[5pt] | &= \frac{x^3+ax^2}{x+a} + \frac{-ax^2+a^3}{x+a}\\[5pt] | ||
Zeile 14: | Zeile 14: | ||
When we treat the new quotient, we add and take away <math>-a^2x</math> to/from <math>-ax^2</math> in order to get something divisible by <math>x+a</math>, | When we treat the new quotient, we add and take away <math>-a^2x</math> to/from <math>-ax^2</math> in order to get something divisible by <math>x+a</math>, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
x^2+\frac{-ax^2+a^3}{x+a} | x^2+\frac{-ax^2+a^3}{x+a} | ||
&= x^2 + \frac{-ax^2-a^2x+a^2x+a^3}{x+a}\\[5pt] | &= x^2 + \frac{-ax^2-a^2x+a^2x+a^3}{x+a}\\[5pt] | ||
Zeile 24: | Zeile 24: | ||
In the last quotient, the numerator has <math>x+a</math> as a factor, and we obtain a perfect division, | In the last quotient, the numerator has <math>x+a</math> as a factor, and we obtain a perfect division, | ||
- | {{ | + | {{Abgesetzte Formel||<math>x^2 - ax + \frac{a^2x+a^3}{x+a} = x^2 - ax + \frac{a^2(x+a)}{x+a} = x^2-ax+a^2\,\textrm{.}</math>}} |
If we have calculated correctly, we should have | If we have calculated correctly, we should have | ||
- | {{ | + | {{Abgesetzte Formel||<math>\frac{x^3+a^3}{x+a} = x^2-ax+a^2</math>}} |
and one way to check the answer is to multiply both sides by <math>x+a</math>, | and one way to check the answer is to multiply both sides by <math>x+a</math>, | ||
- | {{ | + | {{Abgesetzte Formel||<math>x^3+a^3 = (x^2-ax+a^2)(x+a)\,\textrm{.}</math>}} |
Then, expand the right-hand side and we should get what is on the left-hand side, | Then, expand the right-hand side and we should get what is on the left-hand side, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\text{RHS} | \text{RHS} | ||
&= (x^2-ax+a^2)(x+a)\\[5pt] | &= (x^2-ax+a^2)(x+a)\\[5pt] |
Version vom 13:14, 10. Mär. 2009
If we focus on the leading term
With this form on the right-hand side, we can separate away the first two terms in the numerator and have left a polynomial quotient with
When we treat the new quotient, we add and take away
In the last quotient, the numerator has
If we have calculated correctly, we should have
and one way to check the answer is to multiply both sides by
Then, expand the right-hand side and we should get what is on the left-hand side,