Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 3.4:7a

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 3: Zeile 3:
If we are to have a polynomial with zeros at <math>1</math>, <math>2</math> and <math>4</math>, the polynomial must therefore contain the factors <math>(z-1)</math>, <math>(z-2)</math> and <math>(z-4)</math>. For example,
If we are to have a polynomial with zeros at <math>1</math>, <math>2</math> and <math>4</math>, the polynomial must therefore contain the factors <math>(z-1)</math>, <math>(z-2)</math> and <math>(z-4)</math>. For example,
-
{{Displayed math||<math>(z-1)(z-2)(z-4) = z^3-7z^2+14z-8\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>(z-1)(z-2)(z-4) = z^3-7z^2+14z-8\,\textrm{.}</math>}}
Note: It is possible to multiply the polynomial above by a non-zero constant and get another third-degree polynomial with the same roots.
Note: It is possible to multiply the polynomial above by a non-zero constant and get another third-degree polynomial with the same roots.

Version vom 13:16, 10. Mär. 2009

There exists a simple relation between a zero and the polynomial's factorization: z=a is a zero if and only if the polynomial contains the factor (za). (This is the meaning of the factor theorem.)

If we are to have a polynomial with zeros at 1, 2 and 4, the polynomial must therefore contain the factors (z1), (z2) and (z4). For example,

(z1)(z2)(z4)=z37z2+14z8.


Note: It is possible to multiply the polynomial above by a non-zero constant and get another third-degree polynomial with the same roots.